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Communication on the Grassmann Manifold:
A Geometric Approach to the Noncoherent
Multiple-Antenna Channel
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Abstract—in this paper, we study the capacity of multiple-an-  increase [2]. The parametatin{ M, N} is the number of de-
tenna fading channels. We focus on the scenario where the fading grees of freedom per second per hertz provided by the multiple
coefficients vary quickly; thus an accurate estimation of the coef- antenna channel, and is a key measure of performance. This

ficients is generally not available to either the transmitter or the b fi ts th tential f izable i t
receiver. We use a noncoherent block fading model proposed by_0 servation suggests the potential or very sizable improvemen

Marzetta and Hochwald. The model does not assume any channel in spectral efficiency.

side information at the receiver or at the transmitter, but assumes ~ The result above is derived under the key assumption that
that the coefficients remain constant for a coherence interval of the instantaneous fading coefficients are known to the receiver.
length T symbol periods. We compute the asymptotic capacity of 1,5  thjs result can be viewed as a fundamental limitctor

this channel at high signal-to-noise ratio (SNR) in terms of the . o . .
coherence timeT", the number of transmit antennas M, and the herentmultiple-antenna communications. In a fixed wireless

number of receive antennasV'. While the capacity gain of the co- €nvironment, the fading coefficients vary slowly, so the trans-
herent multiple antenna channel ismin{M, IN'} bits per second mitter can periodically send pilot signals to allow the receiver
per hertz for every 3-dB increase in SNR, the corresponding gain tg estimate the coefficients accurately. In mobile environments,
for the noncoherent channel turns out to beM* (1 — M*/T) bits o\ yever, the fading coefficients can change quite rapidly and

per second per herz, whereM* = min{M, N, |T/2]}.Theca- - . e .
pacity expression has a geometric interpretation asphere packing the estimation of channel parameters becomes difficult, partic-

in the Grassmann manifold ularly in a system with a large number of antenna elements. In
Index Terms—Capacity, degees of freedom, multiple antennas, this case, there may not be enough time to estimate the param-
noncoherent communication, space—time coding. eters accurately enough. Also, the time one spends on sending

pilot signals is not negligible, and the tradeoff between sending
more pilot signals to estimate the channel more accurately and
using more time to communicate to get more data through be-
comes an important factor affecting performance. In such situ-
ations, one may also be interested in exploring schemes that do
OTIVATED by the need to increase the spectral effinot need explicit estimates of the fading coefficients. It is there-
ciency of wireless systems, a major effort is being madere of interest to understand the fundamental limitsiofico-
to study the use of multiple antennas. While much work harentmultiple-antenna communications.
been done on systems with multipleceiveantennas, it was A line of work was initiated by Marzetta and Hochwald [4],
only recently shown by Foschini and Telatar [1]-[3] that muc}b] to study the capacity of multiple-antenna channels when nei-
larger spectral efficiency can be achieved by utilizing multiplther the receiver nor the transmitter knows the fading coeffi-
antennas aboththe transmitter and the receiver. cients of the channel. They used a block fading channel model
In a single-antenna additive white Gaussian noise (AWGMhere the fading gains are i.i.d. Rayleigh distributed and re-
channel, it is well known that at high signal-to-noise ratimmain constant fofl” symbol periods before changing to a new
(SNR), 1-bit per second per hertz (b/s/Hz) capacity gain camependent realization. Under this assumption, they reached
be achieved with every 3-dB increase in SNR. In contrast, fire conclusion that further increasing the number of transmit
a multiple antenna system with/ transmit andNV receive antennas\/ beyond?7” cannot increase the capacity. They also
antennas and independent and identically distributed (i.i.ccharacterized certain structure of the optimal input distribution,
Rayleigh fading between all antenna pairs, the capacity gand computed explicitly the capacity of the one transmit and one
is min{ M, N} bits per second per hertz for every 3-dB SNReceive antenna case at high SNR.
In this paper, we will use the same model to study the channel
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supported by a National Science Foundation Early Faculty CAREER Awaignnas. We will focus on the high SNR regime, not only be-

with matching grants from AT&T, Lucent Technologies, and Qualcomm Incggyse it is more tractable than the genera| problem, but also be-
and under a DARPA Grant F30602-97-2-0346. The material in this paper was

presented in part at the IEEE International Symposium on Information theoﬁf?‘usl’e. this is the _reg|me where mUIt'pIe ar_]t.ennas y|e_|d the most
Sorrento, ltaly, June 2000. significant capacity increase from the additional spatial degrees
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functional. It seems difficult to generalize their technique to thet each of the receive antennas. The propagation coefficients
multiple-antenna case. Instead, a geometric approach is adoftech a N x M random matrix which neither the transmitter
in this paper. By transforming the problem into a new coordior the receiver knows. We adopt a Rayleigh-fading model.
nate system, the underlying geometry is described more naiMe also assume that the coefficients remain constant for a
rally and the input optimization problem can be easily solvetime period?Z’, and change to a new independent realization
Using this method, we get the following results. in the next time period. This can be a model for frequency

1) Let K = min{M, N}. In the case€’ > K + N, as hopping, ideally interleaved time division multiple access
SNR — oo, we show that the channel capacity (b/s/HZ)TDMA) or packet-based system where each frame of data sees

is given by an independent realization of the channel but the channel is
constant within each frame. The important feature of this model
C(SNR) = K<1 - T>10g2 SNR + ¢+ o(1) is that the channel remains constant only for a finite duration,

so that there is inherent channel uncertainty at the receiver. In

wherec is an explicitly computed constant that dependg,e fo)1owing sections, we refer t6 as thecoherence timef
only on M, N, and7', ando(1) is a term that goes t0 . ~hannel

zero at high SNR. We specify the optimal input distri- Because of the independence between the different coher-

bution that asymptotically achieves this capacity. For ﬂlﬁ]ce intervals, to calculate channel capacity it is sufficient to

casel’ < K + N, we characterize the rate that Capac"%tudy one coherence interval, where each transmit antenna sends

|ncrﬁa33((ejs V;'th SNR. We cohnclude that in both cases, i jimensional vector, and each receive antenna receives a
each 3-dB SNR increase, the capacity gain is T-dimensional vector. In complex baseband representation, the

e <1 M ) (bls/H2) system can be written as follows:
. . Y=HX+W @)

with M* = min{M, N, |T/2]}. This is the number of T o

degrees of freedom for noncoherent block fading multipléthereX € C*7*%, and the row vectors; €C, i=1,..., M

antenna communications correspond to the transmitted signal at {tietransmit antenna.
2) We show that at high SNR, the optimal strategy is tgimilarly, ¥ € ¢***, and each row vectog; € C*, j =

use onlyM* of the M available antennas. In particular, !> -- -+ VIS the received signal for thith receive antenna.

having more transmit antennas than receive antennas doe5"€ Propagation gain from tih transmit antenna to thiéeh

not provide any capacity increase at high SNR. receive antennh;,i = 1--- M, j = 1.-- N arei.i.d. complex
3) We show that given a coherence tiffiethe maximum Gaussia®A’(0, 1) distributed with density

number of degrees of freedom is achieved by udig plhij) = 1 exp[=|hi, ]

transmit antennas. Y e

4) We give a geometric interpretation of the capacity eXrhe additive noiseW < CY*7 has i.i.d. entriesw,; ~
pression asphere packing in the Grassmann manifolg A(0, ¢2). We normalize the equation to let the average
G(T, K): the set of allX -dimensional subspaces®f. transmit power at each transmit antenna in one symbol period

5) We evaluate the performance of a scheme using trainibg1, so the power constraint can be written as
sequences and compare it with the capacity result. We M T
show that it attains the full number of degrees of freedom. E Z Z |:,;it|2] = MT. )

At the end of the paper, we briefly contrast the high SNR im1 t—1

regime with the low SNR regime, where the capacity of the mul- we refer to theSNR as the average SNR at each receive an-
tiple-antenna channel can be easily computed. We find that mignna. Under the normalization abosR = A /o2,

tiple antennas have a more significant impact in the high SNRThe capacity (b/s/Hz) of the channel is given by
regime than in the low SNR regime. 1

In this paper, the following notations will be used. We will use Cun, N(SNR) = 7 Sup I(X;Y) 3)
capital letters to indicate matrices, small letters for vectors and p=()
scalars, and boldfaced letters for random objects. For exampith the subscript indicating the number of antennas available.
we write X, H for random matricesX, Y for deterministic The Optimization is over all input distributions &f SatiSfying
matrices g, z for random vectors, ane? for scalars. The only the power constraint (2).
exception iSNR, which we use to denote the average signal-to- The goal of this paper is to compute high SNR approxima-
noise ratio at each receive antenna. Unless otherwise statedti@es to Cis, n(SNR) for various values of\/, N, and7". All

write h(.) as differential entropy to the base approximations are in the sense that the difference between the
approximation and”(SNR) goes to zero as the SNR tends to
[l. SYSTEM MODEL AND PRELIMINARIES infinity.
A. System Model B. Known Results

We follow the model in [5], Assume the system ha&  For the multiple-antenna channel with perfect knowledge of
transmit and/V' receive antennas, with i..d. Gaussian noisge fading coefficients at the receiver (but not at the transmitter),

1Sincelog SNR — cc.asSNR — o, this is @ much more accurate approx-the Ch_annel capac_ity is computed in [1], [3]. We cite the main
imation than, say, the statement thai[C' (SNR)/1og (SNR)] = K(1— £).  result in the following lemma.
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Lemma 1: Assume the fading coefficient matrH is known Lemma 4: If H isi.d.,Q is a random unitary matrix that is
to the receiver, the channel capacity (b/s/Hz) of a system witidependent o, thenHQ is independent of).

M wransmit andy receive antennas is given by To see this, observe that conditioning on any realization of

Choterent(SNR) = E | log, det | Ty + SNR gH Q = Q, HQ has the same distribution #5; thus, HQ is inde-
M pendent ofQ.
=F [10g2 det <_7M + %HTHH ) Lemma 5: The input distribution that achieves capacity can
M be written as¥ = AO, where® is aniM x T'i.d. unitary matrix,
Defining K = min{M, N}, K’ = max{M, N}, then a i.e,00" = I,;. Ais anM x M real diagonal matrix such

lower bound can be derived that the joint distribution of the diagonal entries is exchangeable
SNR K (i.e., invariant to the permutation of the entries). Moreo@r,
Clonerent (SNR) > K log, A + | Z Ellog, x3] and A are independent of each other. o
=Kkl The ith row 6,., of © represents the direction of the trans-

where x3, is chi-square random variable with dimensiomitted signal from antennai.e.,f,., = «;/||z;||. Theith diag-
2i. Moreover, this lower bound is asymptotically tight abnal entry ofd4, A;; = ||z;||, represents the norm of that signal.
high SNR. We observe that this is equivalent to the capacithis characterization reduces the dimensionality of the opti-

of K = min{M, N} subchannels. In other words, themization problem from\/I"to M by specifying the distribution
multiple-antenna channel h#s degrees of freedoto commu- of the signal directions, but the distribution of the norms is not
nicate. specified. For the rest of the paper, we will, without loss of gen-
For the casé/ = N, at high SNR erality, consider input distributions within this class. The con-
M jecture that constant equal power inftA = v/T1y,) = 1is
Croberent (SNR) = M log, SNR + Z Ellog, x4 + o(1). asymptotically optimal at high SNR was made in [5]. In the rest
M ) of this paper, we will obtain the asymptotically optimal input

distribution and give explicit expressions for the high SNR ca-
pacity. It turns out that the conjecture is true in certain cases but
not in others.

If we let the number of antenndd increase to infinity, the
high SNR capacity increases linearly witli, and

li 1 Ccoherent(SN R) . SNR -0 5
J\finooSNéEloo M T 082 e =00 C. Stiefel and Grassmann Manifolds

This capacity can be achieved by using a “layered space—timéNatural geometric objects of relevance to the problem are
architecture” which is discussed in detail in [1]. In the followingthe Stiefel and Grassmann manifolds. T8&efel manifold
we will refer to this capacity result with the assumption of pe$ (7', M) for I' > M is defined as the set of all unitafy’ x 7°
fect knowledge of fading coefficient] as thecoherent ca- matrices, i.e.,
pacityof the multiple-antenna channel. In contrast, we nuse- MxT. .
coherent capacityo denote the channel capacity with no prior S(T, M) = {Q €c 1QQ" = IM}'
knowledge ofH. In the special case aff = 1, this is simply the surface of the
We now review several results for the noncoherent capacHQ't sphgre It . .
from [4], [5] The Syefel manifolds (7, M? can pe viewed as an embedded
T submanifold o2 *7T of real dimensio27’M — M?2. One can
Lemma 2: For any coherence timg and any number of re- define a measureon the Stiefel manifold, called thdaar mea-
ceive antennas, the noncoherent capacity obtainedMith 7 sure induced by the Lebesgue measures ™ =" through
transmit antennas can also be obtainedby= 7" transmit an- this embedding. It can be shown that this measure is invariant
tennas. under rotation, i.e., ifS is a measurable subset 8{T, M),
As a consequence of this lemma, we will consider only th‘é(s) - N(SP),.fqr any umtaryf x " matrix P. Hgnce, an.
I.6. unitary matrix is uniformly distributed on the Stiefel mani-
case ofM < T for the rest of the paper.

. fold with respect to the Haar measure. In the c&6e= 1, the

A partial characterization of the optimal input distribution IS . )
. : . . . Haar measure is simply the uniform measure on the surface of
also given in [4]. Before presenting that result, we will first in-

L . 2 . the unit sphere.
troduce the notion dsotropically distributedi.d.) random ma- The total volume of the Stiefel manifold as computed from

trices. . S
this measure is given by
Definition 3: A random matrixR € CY*T for T > M, T .
is called isotropically distributed (i.d.) if its distribution is in- |S(T, M)| = u(S(T, M)) = H L (6)
variant under rotation, i.e., iereye D!

p(R) = p(RQ) We can define the following equivalence relation on the

Stiefel manifold: two element®, () € S(T, M) are equivalent

if the row vectors {-dimensional) span the same subspace,
The following lemma gives an important property of i.di.e., P = U for some unitaryM x M matrix /. The

matrices. Grassmann manifold(T, M) is defined as the quotient space

for any deterministid’ x 7" unitary matrix@.
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of S(T, M) with respect to this equivalence relation. Eac A
element in the Grassmann manif@id7’, M ) is an equivalence
class inS(T, M). In other words,G(T, M) is the set of all
M-dimensional subspaces 6f .

For simplicity, in the rest of this paper, we will refer to “di-
mension” as complex dimension, where one complex dimensi
corresponds to two real dimensions. Thus, the dimensionality
the Grassmann manifold is given by

dim(G(T, M)) = dim(S(T, M)) — dim(S(M, M))
=M(T - M).
The Haar measure on the Stiefel manifold induces a natu

measure on the Grassmann manifold. The resulting volume
the Grassmann manifold is

7 |S(M7 M)| Fig. 1. Coordinate change in (§p, b2] is a basis of2, 1, r» are the row
T ; vectors ofR. C'r = [c;;] wherec;; is the length of the component of in the
% direction ofb;.
_ i=T—M+1 ) @
ﬁ 25 freedom as discussed in Section 1I-C. This coordinate system is
(—1)

depicted in Fig. 1.

To understand the motivation of using such a coordinate
'égtem, we will first consider the channel without the additive
oiseW:Y, = HX. In this extreme case, the row vectors of
the received signd’, span the same subspace as thosX of
i.e., Qgx = Qx, with probability 1. This fact shows that the
random fading coefficient®l affect the transmitted signal§

In this section, we will study the multiple-antenna fadindpy changingC'x, but leave the subspa€kx unchanged.
channel (1) with equal number of transmit and receive antennaskor the channel with additive noise, the subspageis cor-
which will be referred ag4 throughout the section. We will first rupted only by the noise, blilx is corrupted by both the noise
concentrate on the case tHat> 2. It turns out that this is the and the channel fading. Essentially, the value of the coordinate
simplest case for which we can illustrate the use of a geometsigstem defined in (8) is to decompa¥ **" into the directions
approach. All other cases will be treated in Section IV. that are affected by both the fading and the additive noise, and

To compute the channel capacity of the multiple-antentiae directions that are affected by the additive noise alone. In the
channel, we need to compute the differential entropy of randdrigh SNR regime, the randomness@k is dominated by the
matrices. To do this, a seemingly natural way is to view aandomness from the fading coefficients, rather than from the
M x T matrix as a vector of lengtd/7’, and compute the additive noise. Intuitively, we can think thélx is corrupted
differential entropy in the rectangular coordinate system pnly by the channel fading. Thus, the use of coordinate system
cM*T However, the fact that the optimal inp;t has isotropic  (8) allows us to consider the effect of the fading and the additive
directions® suggests the use of a different coordinate systempise separately at high SNR.
Therefore, we will start this section by introducing a new The following lemma provides a connection between the dif-
coordinate system. We will then transform the problem intigrential entropies computed in rectangular coordinates and in
this new coordinate system to calculate the relevant differentthe new coordinate system.

entropies and hence compute the channel capacity. AgeometriEemma 6 (Change of Coordinateshet R € CM*T be a
interpretation of the result is given at the end of the section. random matrix” > M. If Risi.d., i.e.

For details concerning Stiefel manifolds, Grassmann mag’
folds, and the Haar measure, please refer to standard texts s
as [6].

I1l. NONCOHERENTCAPACITY: M = N, T > 2M CASE

A. A New Coordinate System p(R) = p(RQ), ¥ deterministic unitary matrig) € 7%

An M x T matrix R, with 7" > M, can be represented as 9)
the subspac®r spanned by its row vecto(§l g € G(T, M)),
together with anAMf x M matrix Cgr which specifies the\/

row vectors ofR with respect to a canonical basis@irk. The h(R) = h(CR) + log |G(T, M)| + (T— M)E[log det RRT]
transformation ’ (10)

then

R — (Cr, {2r) (®) where|G(T', M)| is given by (7).

is a change of coordinate systenf *1 — ¢M <M x (T, M). Remarks: Notice that the differential entropigg..) in (10)
The Grassmann manifold(Z, M) hasM (Z'— M) degrees of are computed in different coordinate systef{d?) is computed
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in the rectangular coordinates@’ %', andh(Cg) in C**M .  Combine the two equations and we get
In the rest of the paper, we writg.) of arandom matrix without M
detailed explanation on the coordinate systems. If the argumén®®) = (Cr)+log |G(T, M)|+ E |log H lfi(TM)]
has certain properties (e.g., diagonal, unitary, triangular), the i=1
entropy is calculated in the corresponding subspace instead of =i (Cg)+log |G(T, M)|+(T'—M)E[logdet RR']. O
the whole space.
The termh(Cr) + log |G(T', M)| in the right-hand side of B. Channel Capacity

(10) can be interpreted as the differential entropRa@omputed
in CM*M » G(T, M). For a general matrig, Cr depends on
the choice of the canonical basis Q. For each choice of a Y=HX+W (14)
basis, (8) gives a different coordinate change. However, witthere H € C*>*M s the matrix of fading coefficients with
the additional assumption (9), the distribution@f does not i.i.d. CA(0, 1) entries.W € C**T is the additive Gaussian
depend on the choice of basis. To see this, we first factdRizenoise with i.i.d.CA(0, o2) entries. The inpuK € CM*T can
via the LQ decomposition be written asX = A8, whereA = diag(||lz;||, i =1, ... M),

R LV (11) contains the norms of the transmitted vectors at each transmit

- antenna@ is an i.d. unitary matrix, which is independent4f
whereL e ¢M*M js Jower triangular with real nonnegative The total transmit power is normalized to be
diagonal entriesV € ¢T>*M s a unitary matrix. Now the as- M
sumption (9) is equivalent to > Ellla|’) < MT
Visi.d. and independent d. (12)  andthe SNR i§NRz:1M/r;2.
Under this assumption, the row vectors Bf are i.d. in In this section, we will compute the mutual information

CT, which implies that the subspace spanned by these réfX; Y) in terms of the input distribution ofl, and find the

vectorsQg is uniformly distributed in the Grassmann manifold@Ptimal input distribution to maximize the mutual information.
G(T, M). Furthermore, giveif2g, the row vectors are i.d. in  NOW

For convenience, we will rewrite the channel model here

Qg. Therefore, irrespective of the basis chosen, the coefficient ) . B
matrix C'r has the same distribution &%, for an i.d. unitary HX: Y) = h(Y) = h(Y|X).
matrix@ € C">" that is independent df. To compute h(Y|X), we observe that givenX, Y is

It is well known that for the same random object, the differGaussian. The row vectors Bf are independent of each other,
ential entropies computed in different coordinate systems diffghd have the common covariance matrix
by E[log J], whered is the Jacobian of the coordinate change. _ it 27 _ at A2 2
The term(7’ — M) E[log det RR'] in (10) is, in fact, the Jaco- By =X X400l =0 A0 +07Ir.
bian term for the coordinate change (8). To prove that and
prove Lemma 6, we need to first study the Jacobian of som
standard matrix factorizations. It is a well-established approa@zﬂx )=ME
in multivariate statistical analysis to view matrix factorizations )
as changing of coordinate systems. For example, the LQ decom- +M(T = M)logmeo™.  (15)
position (11) can be viewed as a coordinate chaftj&? — Now since we only need to comput€Y’) for the optimal
L x S(T, M), whereL is the set of all lower triangular matricesinput distribution ofX, we will first characterize the optimal
with real nonnegative diagonal entries. A brief introduction dfput distribution in the following lemma.
this te_chmque is given in Append|x A. The Jacobian of the LQ Lemma 8: Let
coordinate change is given in the following lemma.

Therefore, the conditional entropyY'| X)) is given by
M

Z 10g,‘7re(||:ri||2 + 02)

=1

(wg"), i = 1,... M) be the optimal input
signal of each antenna at noise levél If T > 20/

Lemma 7 [7]: Letly1, ..., larar be the diagonal elements ‘a,(o)
of L. The Jacobian of the LQ decomposition (11) is e e fori=1,... M (16)
a
M
- H [AT=) (13) where-2 denotes convergence in probability&ls— 0.
’ i Proof: See Appendix B. |

This lemma says that to achieve the capacity at high SNR, the

Proof of Lemma 6:We observe that the coordinate change f the sianal t itted at h ant tb h
(8) can be obtained by consecutive uses of the LQ decompchnsci)-rrr]n Oth etﬁlgna_ ralnsm|| Ee a falf t";‘]'f‘ enna r_r|1ust tﬁ ml.JtC
tion as follows: by Lemma 7 and (12) igher than the noise level. Essentially, this is similar to the sit-

uation that in the high SNR regime of the AWGN channel, it

MR) =h(L) + (V") + E[log Jr. p] is much more preferable to spread the available energy over all
= (L) 4 log |S(T, M)| + Ellog J1. ;] degrees of freedom rather than transmit over only a fraction of
and the degrees of freedom.
Before using Lemma 8 to compute the channel capacity rig-
h(Cr) = h(LQ) orously, we will first make a few approximations at high SNR
=h(L) +log |S(M, M)| + Ellog Jpr, a1]- to illustrate the intuition behind the complete calculation of the
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capacity. We first observe that singe;||*> > o2 for all i =

1,..., M

[ M

Z log e(||z||* + o2)

Li=1

+ M(T — M)logmea?

[ M

> log melai|?

Li=1

= ME [logdet A*] + M?logme
+ M(T — M)logrea®.

h(Y|X) = ME

~ME + M(T — M)log meo?

17)
To computei(Y'), we make the approximation

h(Y) ~ h(HX).

Now observe thali X is i.d., so we can apply Lemma 6.

Notice that giver2x, HX is i.d. in the subspace; thu€gx
has the same distribution #AQ, where@Q € C¥*M js j.d.
unitary and is independent df A

MHX) =h(Cux) +log|G(T, M)
+ (T — M)E[log det(HA’H")]

=h(HAQ) + log |G(T’, M)|

+ (T — M)E[log det A%]

+ (T — M)E[log det HH']. (18)
Combining (17) and (18), we have
I(X;Y) =~ log |G(T, M)| + (I — M)E[log det HH
— M(T — M)logmeo? — M?logTe
+ h(HAQ) + (T — 2M)E[logdet A>].  (19)

Now observe that random matriHAQ € C*M has
bounded total average power

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

where
1 M T
e, M = 7 10gy |G(T, M)[ + M<1 - 7)1032 e
M
+<1 - 7)E[1c>g,~2 det HH']
and

M
Ellogdet HH'] = Z Ellog x3;]

=1

with x3, a Chi-square random variable of dimensiin
Proof: See Appendix C. O

To connect this result to the capacity of the coherent channel,
we rewrite (20) as

M 1
C]\l,]\l(SNR) = <1 - ?) C(Coherent (SN R)‘i‘T IOgQ |G(T, M)|

+M<1 - %)10& % +o(l) (21)

where Coonerent (SNR) is the channel capacity with perfect
knowledge of the fading coefficients, given in (4).

An important observation on the capacity result is that for
each 3-dB SNR increase, the capacity gainisl — 27) (bits
per second per hertz), the number of degrees of freedom in the
channel.

If we fix the number of antenna® and letthe coherence time
T increase to infinity, this corresponds to the case with perfect
knowledge of fading coefficients. Indeed, the capacity given in
(21) converges t&@opnerent aST — oo. TO see this, we use
Stirling’s formulan! =~ ne¢~"+/2xn, and write

1 M T
“og |G(T, M)+ M[1 === }log
ToglG(, )+ < T)Og

S5

27t M 27t
log 7 — S log "
‘ B 2_los (i—l)!)
1=T—M4+1 =1

- - +r(1- M Yiog L
E| Y [(HAQ), | = ME|>_ ||a:i||2] < M*T. T )% 7w
¢, 5=1 =1 B Ml ‘ 7TT 1 M o 7r27_1T'
Therefore, the differential entropy is maximized by the matrix ST ST T T z_; 0% (i — (T —i+1)!

withi.i.d. CA(0, T') entries, i.e.h(HAQ) < M?logweT. The
equality is achieved by settinge;||> = 7 with probability 1

for all is. Sincel’ > 2M, (T — 2M ) E[log det A”] is also max-

imized by the same choice of input distribution, by the concavity
of thelog function. Thus, the equal constant norm input distri- M 7l
bution maximizes the approximate mutual information, and the T

maximum value is

log |G(T, M)| + (T — M)E[logdet HH']
—M(T — M) log(mea®/T).

A precise statement of the result is contained in the followi

theorem.

Theorem 9:For the multiple-antenna channel with/
transmit, A/ _receive_antennas, and coherence time> 2M,
the high SNR capacity (b/s/Hz) is given by

M
Cu, Mm(SNR) IM<1— 7)103‘2 SNR+epr, v +o(1) (20)

— —1

M T
+M<1 - —>log—
T e

T
+ Mlog — =0.
e

og ————F———
TTe T\ 27T
M1 aleT
M ioe
T %I
In Fig. 2, we plot the high SNR approximation of the non-
coherent capacity given in (21), in comparison to the capacity

r}gith perfect knowledg€' . Lcrent- We Observe that 86 — oo,
t

e capacity given in (21) approach@s,erent (SNR).

In Fig. 3, we plot the high SNR noncoherent capacity for an
8 by 8 multiple-antenna channel in comparison to the single-an-
tenna AWGN channel capacity with the same SNR. We observe
that multiple antennas do provide a remarkable capacity gain
even when the channel is not known at the receiver. This gain is
a good fraction of the gain obtained when the channel is known.

www.manaraa.com



ZHENG AND TSE: COMMUNICATION ON THE GRASSMANN MANIFOLD

S
o

W
o

Capacity (bps/Hz)

[0:]
o

40

Capacity (bps/Hz)

n
o

Capacity for N=2

rfect Knowlgdge

SNR (db)

Capacity for N=8

D
o

Perfect Knowlgdge
T=2N

I=3N
T=5N

20
SNR (db)

30

Fig. 2. Noncoherent channel capacity (high SNR approximation).

Corollary 10: For the special cas® = 1, T" > 2, the ca-

pacity (b/s/Hz) is

T-1
C1,1(SNR)="———

1
7 log,
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noncoherent channel, we have to pay the price/6f 7" degrees

of freedom, as well as an extra penaltykgfy) per antenna.
Proof: Consider

C(‘,oherent (S N R)

+ o(1).

() ot

This result is derived in [5] from first principles. _ o : : _
In the following corollary, we discuss the large system limit, Using the definition of G(7, M)]| given in (7), the first term
where bothM and T increase to infinity, with the ratid//7 becomes

—log|G(T, M)

fixed. As in the perfect knowledge case, the channel capaci

increases linearly with the number of antendds when both

M and SNR are large.

Corollary 11: For the case when bothd andZ’ approach

ratio Cis, v /M (b/s/Hz/transmit antenna) is given by

1
—C SNR) =
IV ‘M, M ( )

+(1 =)

i=T—-M+41
infinity, but the ratioy = A/T is fixed, the channel capacity Now use Stirling’s formula:! ~ n" ¢~

Cwm, m increases linearly with the number of antenfiésThe 7 grow, we have

1 T
W108|G(T7 M)+ (1 —7)108%

1
M Ocoherent (SNR) + 0(1) .

-

—log SNR/e by (5)

27t

M 27Fi
(i —1)! _; (z'—1)!]'

"v/27mn, and letM and

1
W108|G(T7 M)

. . Cun m(SNR)
A}lm SNII%m — 1 T M
— 00 — 00 ) ) e
k(y) SNR ~ T Z LlogT - Z tlog T]
—< + (1 —~)log, —)} =0 (22) i=T—M+1 i=1
log, e e IV
where I e 2 log S
(1-9)* Y 1—~ [—T M+1 /T ;T T
k() = Tlog(l —9)+ 5 logy + —
v)lo
Notice that the ternbg SNR /¢ is the limiting coherent capacity ST T

per antenn&’coyerent /A given in (5). It can be easily checked
that%(y) < 0 forall'y. This fact shows that to communicate in

1 Y
_>_U tlog—dt—/ tlogEdt}—(l—'y)logT
v 1—v t 0 t
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Fig. 3. Comparison of noncoherent channel capacity versus AWGN capacity.
we 1 [7 ' ThereforeY is independent o€x = v/T'Q, i.e., the observa-
=(1-vy)log— +— logtdt — log . ) . . : O
(1 =")log T + ¥ UO tlogtdi /l_wt Ogtdt} tion of Y provides no information abod®x; thus, the second
Hence, term in (23) is0. Now we conclude that by using the equal con-
1 T stant norm input, all the mutual information is conveyed by the
UT log |G(T, M)| 4+ (1 —v)log p. random subspacex
1 v 1 IX,Y)=1(Qx;Y).
ﬁ_[/ tlogtdt—/ tlogtdt} ( )_ (x5 ) _
7 Lo 1—y In the noncoherent multiple-antenna channel, the informa-
(1—~)2 v 1—~ tion-carrying object is a random subspa@g;, which is a
=Ty log(1 —v) + 5 logy + ——. D random point in the Grassmann manifold. In contrast, for the

coherentcase, the information-carrying object is the matrix
C. Geometric Interpretation X itself. Thus, the number of degrees of freedom reduces
. . from MT, the dimension of the set ¥/ by 7" matrices in
By using the _coo_rdmate system (8), we can decompose Eﬁ% coherent case, /(7T — M), the dimension of the set of
mutual information into two terms all row spacesof M by 7" matrices in the noncoherent case.
I(X;Y)=1Qx; YY)+ I(Cx; Y|2x). (23) The loss ofM? degrees of freedom stems from tbeannel

That s, we decompose the total mutual information into the myncertaintyat the receiver: unitary/ x 7" matrices with the
tual information conveyed by the subspatg, and the mutual S&me row space cannot be distinguished at the receiver.
information conveyed within the subspace. In the following, we will further discuss the capacity result to
SinceX is of the formX = A, with © being an i.d. unitary show that it has a natural interpretatiorsphiere packing in the
matrix independent oft, we haveCx = AQ, whereQ is an Grassmann manifold _
i.d. M x M unitary matrix independent of. Consequently, we I the can_omcal AW_GN _channel, the channel capacity ha_s a
can writeCgx = HAQ. From the previous section, we knovae”.'!mOW” interpretation in terms of “sphere packing.” This
that the asymptotically optimal input distribution at high gNANtuition can be generalized to coherent and noncoherent mul-

is the equal constant norm input tiple-antenna channels. _
- For the coherent multiple-antenna channel, the high SNR
P(lzi|| =VT)=1, Vi=1,..., M.

channel capacity is given b§' ~ logdet(%HHT). After
With this input,Cx = VTQ andCrx = vVTHQ. Observe appropriate scaling, we have the transmit powgfz;||?] = 1,
thatH is itself i.d., and by Lemma 44Q is independent off. and the noise varianeg® = M/SNR. Let the inputz be i.i.d.
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and
1
7 logq — Eflog det(THH")] + log |G(T, M)|
— M(T — M)logweo?
:M(T - M) log SNR + CM, M
which is precisely the capacity given in Theorem 9. Therefore,

the channel capacity can be interpreted as packing spheres in the
product space of Grassmann manifolds, as illustrated in Fig. 5.

V = det(H HN)! Vol[S{V/MI)]

Fig. 4. Sphere packing in coherent multiple-antenna channel. IV. NONCOHERENTCAPACITY: GENERAL CASE

In the previous section, we discussed the multiple-antenna
Gaussian distributed, and the codeword lengtth. e denote fading channel with same numbgaf of transmit antennas and
By(r) as the sphere of radiusin C%. For largel, the input receive antennas, and the coherence fime 2/. In this sec-
sequencéz: , ..., x;) lies in the spherd,;;(v/MI) with high tion, we will study other cases with general valuesiéf NV
probability. The fading matrixd stretchesz to Hz, which andZ’.
lies in an ellipsoid of volumelet(HH )V ol (B (v MI)).

The received signal lies in a sphefy;(vV Mic?) around A. TheM > N, T > 2N Case

(Hzy, ..., Hz;). The capacity can be written as the logarithm For this case
of the ratio of the two volumes Y=-HX+W=HAO+W
o 1 | det(HHMV ol( By (VMI)) whereY, W € CN*T. H € ¢NV>*M has i.i.dCA(0, 1) entries.
~ - log X € ¢M*T_ AisanM x M diagonal matrix containing the
l Vol Bapu (v Mio? g g
ol Bani( 7*) norm of the transmitted vector®. € ¢M*7 s i.d. unitary and

= 1ogdet<i HHT> — logdet NN gt is independent ofl.
o? M Comparing to the case witlv transmit andV receive an-
tennas, now we have more transmit antennas. If we choose only

The sphere packing is depicted in Fig. 4. . . . .
For the noncoherent channel where the fading coefficients é?euseN antennas to transmit, the capacity derived in Theo-

unknown, we can interpret the capacitydphere packing in the m 9 N

Grassmann manifoldSince the subspadex is the object that Cx x(SNR) :N(l—T)log2 SNR+cn, y+0(1) (b/s/Hz)
we use to convey information, we view the transmitted signal in ] ) )
each coherence interval as a point in the Grassmann manifi@Symptotically achievable. Consequendi;, ~(SNR) is a

G(T, M). Similar to the perfect knowledge cadé,scales the lower bound of the capacitfy, v (SNR). _
volume to balet(THHT)T—J\l|G(T7 M)|. With codewords of In the coherent channel, by adding more transmit antennas,

lengthl, the received signal lies in the product spacésifaled although _the number of degrees of freedom is not increased, the
Grassmann manifolds, with dimensia#i(7’— M )l. The noise capac_:lty increases by a con_stant. that <_joes not depend on SNR.
perturbs the signal in the spheBa; -,/ M (T— M)io?). This increase comes fromdiversity gain through averaging

DenoteH: i = 1 I as the fading coefficient matrix in co- OVe€r more fading coefficients. Somewhat surprisingly, the fol-
(3] - Tt . .
herence interval. we write the ratio of the two volumes lowing theorem shows that for the noncoherent channel at high

SNR, no increase whatsoever is obtained by having the extra
M — N transmit antennas.

l
I det(TH,;H))"=M|G(T, M)

g=—=1 Theorem 12:1f A > N and the coherence tiniE > 2.XV,
Vol(Burr—nnyi (v M(T — M)lo?)) the high SNR capacity (b/s/Hz) is given by
and CJW: N(SNR) = CN7 N(SNR) =+ 0(1)

whereCx ~(SNR) is given in Theorem 9. This capacity can be

l
llogq =(T— M) 1 Zlogdet(THiHj) + log |G(T, M)| achieved by only usingv _of the transmit antennas.
l I =~ : Proof: See Appendix D. O

1 log Vol (Bj\l(Tfj\l)l ( /M(T — M)lo? )) The proof is technical, but the key idea is that the number of
! degrees of freedom for noncoherent communication actdaly

Using the formulal ol(B,(r)) = x"r2"/n! and Stirling’s Creasesf one insists on spreading the power across more Man
formulan! &~ n"e~"v/2mn, we get as, — oo transmit antennas. Over a coherence tifiéhe number of spa-
tial-temporal degrees of freedom available, even if the channel

1 log Vol(By(r)) = 1 log WnT'Qn were known to the receiver, i§7°, being limited by the number
2 2 (4 - of receiveantennas. Spreading the power across more Man
— =g (mr®)” transmit antennas cannot increase this number but only serves
n nte"/21n to increase the amount of channel uncertainty, as the dimension
— log(mer?) of the channel matrid{ is now increased. Thus, the effective
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x@){ooo@___ Q /I = D)lo®

V; = Vol[G(T, M)] det(THHT)T-M

Fig. 5. Sphere packing in noncoherent multiple-antenna channel.

degrees of freedom for noncoherent communications is actuathse, there islassof VA1’ degrees of freedom, increasing with

decreased. M'’. This loss is precisely due to the lack of knowledge of the
Let us do some heuristic calculations to substantiate this ii¥- by A’ channel matrix; at the receiver.

tuition. The same argument in Section I11-B to make high SNR In order to maximize the mutual information at high SNR,

approximation of the entropy can be used we must choosé/’ = N to maximize the number of degrees
YY)~ h(HX). of freedom, which suggests the use of oilyof the transmit
Observe thaH X is i.d. We can apply Lemma 6 to yield antennas. Therefore, we conclude that if the equal constant norm
h(HX) input is used, the extr&/ — [V transmit antennas should be kept

silent to maximize the mutual information at high SNR.

A direct generalization of the above argument results in the
following statement: for a noncoherent channel with> N, to
maximize the mutual information at high SNR, the input should

= h(Cux) +log |G(T, N)| + (T — N)E[logdet HA’HT).
Condition onX, Y is Gaussian with i.i.d. row vectors. The
covariance of each row vector is given By = X X + o21;.

Thus, we have be chosen such that with probabilitythere are preciselyV of
h(Y]X) the antennas transmitting a signal with strong power, i.e.,
M
=N Z Ellogme(|2i|* + 03] + N(T — M)log wea?. hlrb H?H =00

=1

Consider now a scheme where we Wsé < M of the and the other — N antennas havéz;| /o _bound.ed. As a
transmit antennas to transmit signals with equal constant nofigsult, the number of degrees of freedom is not increased by

and leave the rest of the antennas in silence. To keep the s4@¥ng the extral/ — IV transmit antennas. _
total transmit power The question now is whether the capacity can be increased

M by a constant amount (independent of the SNR) by allocating a

Z El||z:||?) = MT small fractionof the transmit power to the extra antennas. The-

i=1 orem 12 says no: at high SNR, one cannot do better than allo-
we set||z;||? = &L fori = 1,..., M’, and|jz;|]| = 0for catingall of the transmit power on onlj¥ antennas. A precise
it =M'+1,..., M. Let H, contain the firstd/’ columns of proof of this is contained in Appendix D, but some rough intu-
H; thus ition can be obtained by going back to the coherent case. The

MT mutual information achieved by allocating powerto theith
Y = 1 HOe+W. transmit antenna is given by
M
With this input,C g x has the same distribution %%Hl; thus, g log, det <]N + Z p_; hihZT)]
the resulting mutual information is iz ¢
IX,Y)=h(HX) - h(Y|X) N ; ; M ; ;
= i=N+1

where

(M) = log |G(T, N)| = N(T = M) log reM where h; is the N-dimensional vector of fading coefficients

from transmit antenna to all the N receive antennas. Since

(T — N)E {bg det <ﬂ H, Hl)} the matrix3_ ", 2 h;h! is full rank with probability1, the term
M M v+1 B-h;h will give a negligible increase in the mutual in-
MT MT ; ; 3
+h H, ) — NM'logre +o2). formation as long as most of the power is allocated to the first
R M’ M’ N transmit antennas. The proof of Theorem 12 reveals that a

-~

o similar phenomenon occurs for the noncoherent case.

Observe that ifM’ > N, H,; has rankN with probability One should note that the maximal degrees of freedom is ob-
1. By choosing different values a¥/’, ¢;(M’) only changes tained by usingV of the M transmit antennas in both the co-
by a finite constant that does not depend on SNR. On the otlverrent and noncoherent cases. The difference is that in the co-
handythe teriV(Z M) logsea?yields.alarge difference at herent case, spreading the power acros&faitansmit antennas
high SNR. The coefficien¥ (7 — A1) is the number of degreesretains the maximal degrees of freedom and provides a further
of freedom available for communication. Sind&’ is the total diversity gain (reflects in a capacity increase by a constant, inde-
number of spatial-temporal degrees of freedom in the coherpendent of the SNR). In contrast, there is a degrees of freedom
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penalty in using more tha®v transmit antennas in the nonco-Geometrically, we can vied X as an object on a submanifold
herent case, and hence at high SNR one is forced to use amtyof CV*7 with dimensionM (I’ — M) + NM

N transmit antennas even though there may be more available. ;

Thus, no capacity gain is possible in the noncoherent case at M ={R €% rank (R) = M}.

high SNR. One should however observe that the degrees ofow consider the received signl = HX + W, which is
freedom penalty ismallerthe longer the coherence tinfleis,  corrupted by the additive noi$& < ¢¥*Z". We can decompose
and hence the SNR level for this result to be Valiﬂi@ﬂerthe W to ber, the Component on the tangent p|ane/\df’ and
|0ngerT is as well. Thus, this resultis meaningful at reasonabWQ’ the Component in the normal Space/\df_ By the argument
SNR levels in the regime whefiis comparable tavV. above, we know that the dimensionsi®f, andW , are

B. TheM < N, T > M + N Case dim(W.) = M(T - M)+ NM

We now consider the opposite case, when the number of re- dim(Wy) = NT — dim(W,) = (N - M)(T — M).

ceive antennad’ is larger than the number of transmit antennagince W s circular symmetric, bot®; and W, have i.i.d.
M. By increasing the number of the receive antenfid®eyond ¢/ (0, 52) entries.
M, intuitively, since the information-carrying object is Af+di- Observe that sinc# X is a random object oM, at high
mensional subspace, the number of degrees of freedom shaglgk the randomness af in the tangent plane of4 is domi-
still be dim(G(T, M)) = M (I — M) per coherence interval. hateq by the randomness fraBiX rather than from the noise
On the other hand, the total received power is increased; hetppe Consequently, at high SN, has little effect on the dif-
we expect that the channel capacity to increase by a constgpkntial entropy:(Y'). On the other hand, the normal space of
that does not depend on the SNR. In this section, we will argug s occupied by, alone, which contributes a ter(lV —
that the equal constant norm input is optimalidr< N at high M)(T — M)logmeo? in h(Y). Therefore, we get that as the
SNR, and the resulting channel capacity is noise levels? — 0, the differential entropy:(Y’) approaches
v —oc atthe ratd N — M) (T — M) log o2. In fact, by using the
Cu, n(SNR) = M<1 - _>10g2 SNR + ¢pr, v (b/s/Hz) technique of perturbation of singular values in Appendix E, we
T can compute the distribution of the singular valueg’ofand
show that at high SNR

MY) =~ h(HAQ) + (I' — M)E[logdet(AH HA)]
+1og |G(T, M)| + (N — M)(T — M)logmes? (25)

where

1 M T

¢ = —logy |G(T, M)| + M (1~ }log, —
CM,N =T og, |G(T, M)| + < T) 082
where@ € CM>M s unitary i.d. matrix that is independent of
H and A.

To compute the conditional entropyY | X ), we observe that
and given X, Y is Gaussian distributed. The row vectors are inde-
N peTndent of each other, with the same covariance mafrix
2
Ellogdet H'H] = Z Ellog x3] X'X + o*17. Thus, we have
i=N—M+1 M

WY|X) =N (Y Ellogme(|zi]* +o)]

i=1

+<1 - %)E[logQ det H'H] (24)

with x3; a chi-square random variable of dimensizin The
number of degrees of freedom per symbolMg1 — M /T),
limited by the number ofransmitantennas. +(T — M)log 7r602>
Although the result is similar to that in Theorem 9, it turns
out that some special technique has to be used for this problem. M
Compared to the case wherd > N discussed in the ~N Z Ellog me||;||*] + N(T' — M)log meo?.
previous sections, an important fact is that when we have less i=1
transmit antennas than receive antendds< N, we can no  Combining the preceding expressions, we get
longer make the approximationY) =~ h(HX) even at high
SNR. In this case, &8NR — oo, the differential entropy.(Y') (X Y) =hY) - MY]X)

approaches-oc when computed in the rectangular coordinates ~ log |G(T, M)| + (I' — M)E[logdet H'H|
in CV*T . To see this, we observe that without the additive — M(T — M)logmes® — NM logme
noiseW, the received signd¥, = HX hasN row vectors h(HA T — M — N)Elos det A2
: ; . . - M - t A7,
spanning am/-dimensional subspace. That is, the row vectors +hHAQ) +( )Ellogdet A']
are linearly dependent of each other; therefo(d X) = —co. To maximize the mutual information, the only term that de-

Similar to the coordinate change defined in (8), we can dpends on the distribution of is the lastlineHAQ is anN x M
composeYo.=-HX. into.two.parts:the.subspacey spanned matrix subject to a power constraint, thus the entropy is maxi-
by the row vectors with dimensiofl andCrx € CV*M to  mized by the matrix with i.i.d. Gaussian entries. To achieve this
specify the position of théV row vectors insideé2x. The total maximum, the input distribution has to B ||z;|| = V1) = 1
number of degrees of freedom is therefédg€l” — M)+ NM. foralli = 1, ..., M. With the further assumption thdt >

www.manaraa.com



370 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002
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Fig. 6. The number of degrees of freedom versus the number of Tx antenf&@sfa@NV.

M+ N, (T — M — N)Elogdet A? is also maximized by the C. A Degree of Freedom View

same input.distri.bution: Thergfore, we conclude that the asymprig. 6 gives a bird's eye view of our results so far, focusing
totically optimal inputdistributionforthe/ < N, T'> N+M 45 the degrees of freedom attained. We fix the number of
case is the equal constant norm input, and the maximum muthalaive antennaa’ and the coherence tini& and vary the

information achieved by this input is given by

% I(X;Y) = log |G(T, M)| + (T — M)E[logdet TH' H]
— M(T — M)log meo?

M
:M<1 + ?>10g SNR+ epr, v (26)

wherecy; n is defined in (24).

number of transmit antenna®, and plot the (noncoherent)
degrees of freedom attained by the equal constant norm input
distribution on allM transmit antennas. We also assume that
T > min{M, N} + N. From the previous two subsections,
the number of degrees of freedom per symbol time is

wintir )1 1),

We also plot the number of degrees of freedom in the coherent

Comparing ta”,y, v (SNR) given in Theorem 9, we observecgse: this is simply given by
that increasing the number of receive antennas does not change

the rate at which capacity increases witg SNR.

min{M, N}.

To make the above argument rigorous, the convergence of the

approximation (25) has to be proved rigorously, which involves ™
many technical details. As a partial proof, the following lemm33''0S:

It is interesting to contrast coherent and noncoherent sce-
In the coherent channel, the number of degrees of

shows that the approximation is an upper bound at high SNRreéedom increases linearly id/ and then saturates when

Lemma 13:For the multiple-antenna channel with/

M > N.In the noncoherent channel, the number of degrees
of freedom increases sublinearly with/ first, reaches the

transmit, N receive antennas, whefd < N, and the coher- maximum atd/* = N, and then decreases fdf > N. Thus,
ence timel’ > N + M, the channel capacity (b/s/Hz) satisfieshigh SNR capacity for thd/ > N case is achieved by using

M
limsup O]w N(SNR) —M[1-— 1Og2 SNR—CJW N S 0
SNR— 00 : r ’

wherecyy, v is defined in (24).
Proof; See'Appendix E. O

only &V of the transmit antennas. One way to think about this
is that there are two factors affecting the number of degrees
of freedom in multiple-antenna noncoherent communication:
the number of spatial dimensions in the systenin{M, N})

and the amount of channel uncertainty (represented by the
factor1 — M/T). For M < N, increasingM increases the
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spatial dimension but introduces more channel uncertainty; i
however, the first factor wins out and yields an overall increase dim[G(T, M")]
in the number of degrees of freedom Har > N, increasing

M provides no further increase in spatial dimension but only
serves to add more channel uncertainty. Thus, we do not want
to use more thatV transmit antennas at high SNR.

D. Short Coherence Time

In this subsection, we will study the case wiEr< K + N,
whereK = min{M, N}. From the discussion in the previous
sections, we know that to maximize the mutual information at
high SNR, our first priority is to maximize the number of de-
grees of freedom. In the following, we will first focus on maxi-
mizing degrees of freedom to get some intuitive characterization
of the optimal input. Fig. 7.

First, we observe that if we have more transmit antennas than
receive antennagd/ > N, by a similar argument to that in Sec-
tion IV-A we know that the mutual information per coherencér SOme constant ¢ that do not depend on the SNR. We ob-
interval increases with SNR no faster thalit7 — N)log SNR. ~ Serve that wh_en the cohgrencg tities small, the number of
This can be achieved by using onl of the transmit antennas. useful transmit antennas is Ilmltgd @Byrather than the number
In the following, we will thus only consider the system witrf receive antennad’ (as in Section IV-A).
transmit antennas no more than receive antennash.es, N. Note that the result above is not as sharp as in the other cases,
We will also assumé& > 1. as the constant term is not explicitly computed. It appears that

Now suppose we use the equal constant norm input bi/er whenT <.K + N, the optim.al distribuFion ford cannot be
of the transmit antennas, signals with power much larger thepmputed in closed form, and in general is not the equal constant
the noise Under this input, the information-carrying object ig’0rm solution. _
an M’-dimensional subspade G(T, M')), thus the number Lemma 2 says that given the coherence tim®ne needs to

<y

0

T

(NS

Number of degrees of freedom versus number of transmit antennas.

of degrees of freedom available to communicate is use at most’ transmit antennas to achieve capacity. This result
holds for all SNR. The above result says that at high SNR, one
dim(G(T, M")) = M'(T — M'). should in fact use no more thaff’/2| transmit antennas.

In Fig. 7, we plot this number as a function &f’. We observe
that the the number of degrees of freedom increases Mith V. PERFORMANCE OF APILOT-BASED SCHEME

until M = | £], after which the number of degrees of freedom To communicate in a channel without perfect knowledge of
decreases. If the total number of transmit antenWas< | % |, the fading coefficients, a natural method is to first send a training
we have to use all of the antennas to maximize the numberggfquence to estimate those coefficients, and then use the esti-
degrees of freedom. On the other hand, in a system Wit mated channel to communicate. In the case when the fading
|51, only |7/2] of the antennas should be used. coefficients are approximately time invariant (large coherence
Now using the same argument as in Section IV-A, we cafine T'), one can send a long training sequence to estimate the
relax the assumption of equal constant norm input, and conclugiannel accurately. However, in the case wiign limited, the
that in a system withi/ > [% ], only |77/2] of the transmit choice of the length of training sequence becomes an impor-
antennas should be used to transmit signals with strong powght factor. In this section, we will study a scheme which uses
e, lim ||z;]* /0% = oo 71 symbol times at the beginning of each coherence interval
To summarize, we have that at high SNR, the optimal inpt§ send a training sequence, and the remaifling= 7 — 1
must haveM " antennas transmitting signals with power mucBymbol times to communicate. In the following, we will refer
higher than the noise level, whefé* = min{M, N, |$|}. to the firstZ; symbol times when the pilot signals are sent as
The resulting channel capaci€jy, v (SNR) satisfies the training phase and the remaining’ symbol times as the
communication phas&Ve will describe a specific scheme, then
M >1Og SNR<Z (27) derive the performance and compare it with the capgcity results.
The first key issue that needs to be addressed is: how much
of the coherence interval should be allocated to channel estima-

2Here the notion “with power much larger than the noise” meanion? This can be determined from adegree of freedom anaIyS|S.
||:||?/o? — oo. For the remaining/ — A’ antennas, signals with power
comparable with the noise might be transmitted. The analysis of those weak
signals;-as-in-Appendix-Dyis-technically-hard;-butsitsis clear that the number3During the writing of this paper, we were informed by B. Hassibi of inde-
of degrees of freedom is not affected, since the resulting capacity gain ispandent and related work on pilot-based schemes, in which the more general
most a constant independent of the SNR. Therefore, in analyzing the numgeestion of optimal training schemes is also addressed [8]. In this paper, we
of degrees of freedom we may think of the remainig— 1/’ antennas as will evaluate the performance the gap between a certain pilot-based scheme and
being silent. the channel capacity at high SNR.

C S 01\47 N(SNR) — M* <1 —
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SupposeV!’ of the transmit antennas is to be used in the com- ¢ In the communication phase, we communicate using the
munication phase. The total number of degrees of freedom for estimates of the fading coefficienis and the knowledge

communication in this phase is at most on the estimation error. We choose the input distribution
X. to have i.i.d. Gaussian entries, subject to the power
min{M’, N}(T" —11) (28) constraint.

We normalize the total transmitted energy in one co-
herence interval to bé/*7". Under this normalization,
SNR = M*/o?. Let D = +/rM*, wherer indicates
the power allocation between the training phase and
the communication phase. To meet the total energy
constraint, the power of the communication phase is
(M*T —r(M*)®)/(T — M*). If r = 1, the same power

is used in training and communication.

the upper bound being given by the coherent capacity result
(Lemma 1). On the other hand, to estimate #é by N un-
known fading coefficients, we will need at leadtd!’ mea-
surements at the receiver. Each symbol time yidldsieasure-
ments, one at each receiver. Hence, we need a training phase
of duration7; no smaller tha\/’. This represents the cost for
using more transmit antennas: the more one uses, the more the
time that has to be devoted to training rather than communica-
tion. Combining this with (28), the total number of degrees of In the training phase, with the pilot signals described above,

freedom for communication is at most the received signals can be written as
min{M’, N}T — M’). Y, =VvrM*H+ W,

whereY ,, H, W, € CV*M" | H contains théVM* unknown

Th,ls number can be optimized with r_espect]\tﬁ, subject 0 cPefﬁcients that are i.i.dCA/(0, 1) distributed, and¥,, is the
M’ < M, the total number of transmit antennas. The Optimaly Jitive noise with variance?

number of transmit antennad™ to use is given by Observe that since the entriesidfare i.i.d. distributed, each

T coefficient can be estimated separately
M* = Inin{M7 N, {—J }
2 y.. = VrM+h; +w;;, fori=1,..., N;j=1,...M".
[ J 7 ’ ’ ’ ’
with the total number of degrees of freedom givenidy (1" — Since bothh;; andw;; are Gaussian distributed, we can per-
M*). This is precisely the total number of degrees of freedoform scalar MMSE
promised by the capacity results VG
From this degree of freedom analysis, two insights can be }}U = 7—y,.
. . . g rM* +O-2 )
obtained on the optimal number of transmit antennas to use for
pilot-based schemes at high SNR. and the estimatels;; are independent of each other, each entry
« There is no point in using more transmit antennas than f@ving variance
ceive antennas: doing so increases the time required for = S rM*
training (and thereby decreases the time available for com- o1, = Ellhi;|"] = rM* + o2

munication) but does not increase the number of degrees R

of freedom per symbol time for communication (being The estimation error;; = h;; — h;; is Gaussian distributed
limited by the minimum of the number of transmit andVith zero mean and the variance

receive antennas). o2

: : . . Ellei)’] = -
« Given a coherence interval of lendth there is no point llesil"] rM* + o2
in using more thafl’/2 transmit antennas. Otherwise, togy|gq ¢;;’s are independent of each other.

much time is spent in training and not enough time for |, the communication phase, the channel can be written as

communication.
These insights mirror those we obtained in the previous non- Y. _{IXC +W. N
coherent capacity analysis. =HX.+(H-H)X.+W,,
We now propose a specific pilot-based scheme Whi%ereX(, € CM™ XTIz has Li.dCA(0 Terj) entries. Define
achieves the optimal number of degrees of freedom of ‘ PreM
M*(T — M™). W.=H-HDX +W,

* In the training phase of length, = M™, a simple pilot a5 the equivalent noise in this estimated channel, one can check
signal is used. At each symbol time, only one of the afnat the entries o, are uncorrelated with each other and un-

tennas is used to transmit a training symbol; the others &gyrelated to the signdl X .. The variance of entries &V .. is
turned off. That is, the transmitted vector at symbol timegjyen py

is[0,...,0,x; =D, 0, ..., 0]Y. The entire pilot signal i
X, is thus anM/* x M* diagonal matrixX,, = DI-. o2 = o? + M*E[, T—rM
(] _ *
» At the end of the training phase, all of the fading coeffi- r-M
cients are estimated using minimum mean-square estimaThe mutual informatiord (X ..; ¥ ..) of this estimated channel
tion (MMSE). is difficult to compute since the equivalent noi#é. is not

www.manaraa.com



ZHENG AND TSE: COMMUNICATION ON THE GRASSMANN MANIFOLD 373
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Fig. 8. Comparison of pilot based scheme versus the noncoherent capacity.

Gaussian distributed. However, sincﬁ{c has uncorrelated Thus, the lower bound of the mutual information (b/s/Hz)
entries and is uncorrelated to the signHIX, it has the same achieved in this pilot based scheme is given by

first- and second-order moments as AWGN with varianée .

Therefore, if we replacdV . by the AWGN with the same I(X,;Y,.)> r-M Cooherent(BSNR) +0(1).  (29)
variance, the resulting mutual information is a lower bound of T

I(X.; Y.). NowsinceH has i.i.d. Gaussian distributed entriesThis achieves exactly the optimal number of degrees of freedom
and is known to the receiver, this lower bound can be computeg (7" — M*), as claimed.

by using the result for channel with perfect knowledge of the We can find the tightest bound by optimizing over the power

fading coefficients, given in (4) allocationr to maximizeSNR. We obtain
. N
SNR *\272 * 12 _ *) _ *
I(Xc§ Yc) 2 MIOg % + Z E[IOngi]v rt = \/(M ) =+ M1 (T 2M ) M T.
Me o NS MH(T —2M*)

where the new SNR Now we conclude that by using the pilot based scheme de-
M* T—rM* ~2

T O scribed in this section, we can achieve a mutual information

SNR = o2 that increases with SNR at rai-‘é*(TT_—M*) log, SNR (b/s/Hz),
MY (T which differs from the channel capacity only by a constant that
GM %) (T=M) does not depend on SNR.
T2y M PTrM) _ The Iower b_ound_of mutual _information for this scheme (29)
(rM*+o)(T—=M*) is plotted in Fig. 8, in comparison to the noncoherent capacity
r(M*(T — rM*) derived in Theorem 9. The coherent capacity is also plotted.
- o2(rM* + 02)(T — M*) + M*o2(T — rM~*) Corresponding to Corqllary 11, we take the large system limit
(T —rM*) M* py letting pothM* and7’ increase taxo, but keem = M*/T
— T+r(T—2M") o2 fixed. Notice that the choice of* and the resulting SNR loss

o _ ) £ only depend on the ratid/*/T’; thus, the resulting mutual

The last limit is taken at high SNR. We define information increases linearly with/*, and at largeM* and

= SNR (T —rM?*) high SNR
SNR T +7(T — 2M*)

as the SNR loss.

1
M*

I(X Y. > (1-)log 2 SNR
c
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VI. Low SNR REGIME at all. This is of course just the opposite of the situation in the

In this paper, we have focused almost exclusively on the highqh SNR regime.
SNR regime. It is interesting to contrast the results with the sit- VIl CONCLUSION
uation in the low SNR regime. First, we observe that '

In this paper, we studied the capacity of the noncoherent

O N(SNR) < Cooterent(SNR) multiple-antenna channel. We used the model that assumes
’ - SNR no prior knowledge of the channel at either the transmitter
:E[logQ det <IN + WHHTH or the receiver end, but assumes that the fading coefficients
remain constant for a coherence interval of lengtlsymbol
< log, det <IN + SNR E[HI-IT]) times. Undgr this assum.ption, we conclude that a system with
M M transmit andN receive antennas ha&/*(1 — M*/T)
= N log,(1 + SNR), degrees of freedom per symbol time to communicate,

where M* = min{M, N, |T/2]}. To utilize these degrees
where the second inequality follows from the concavity of th@f freedom, the optimal strategy at high SNR and when

log det function and Jensen’s inequality. Hence, T > min{M, N} + N is to transmit orthogonal vectors "
of the transmit antennas with constant equal norms, and use the
SNR subspace spanned by those vectors to carry information. The
] M, N( ) ‘ . L L
lim sup “TSNR < Nlog,e. resulting channel capacity is explicitly computed as
SNR—O

*

M
T )108;2 SNR+cmin{l\/f,N}, N +0(1)

This upper bound can be asymptotically achieved by allGazy (SNR)=M" <1_

cating all the transmit power on the first symbol of each co- _ ] _ ) _

herence interval and on only one transmit antenna. The recei}dieréc, v is a constant given in (24). This expression can be
adds up (noncoherently) the received signals from each of thelfiérpreted as sphere packing in the Grassmann manifold. We
ceive antennas. This reduces the multiple-antenna channel v##P Showed that the performance achieved by a training-based
T > 1to a single-antenna Rayleigh-fading channel Wite= 1~ Scheme is within a constant of the capacity, independent of the

and NV times the received SNR per antenna. As is well knowNR-

the low SNR capacity of such a channelSAR - Nlog, e, We observe that having more transmit antennas than receive
achieving the above upper bound. (See, for instance, [9, E3Atennas provides no capacity gain at high SNR, while having
ample 3].) Thus, more receive antennas does yield a capacity gain, but will not
increase the number of degrees of freedom. To maximize the
. Cm ~(SNR) number of degrees offreedomina cha_mnel with given coherence

oL, T onr Vloexe  (B/SHZ) time 7', the optimal number of transmit antenna$¥/2|, and

the number of receive antennas should be no less|th#n| .

The above analysis shows that the noncoherent and coherel:lrthe honcoherent communication scheme suggested by the

capacities are asymptotically equal at low SNR. Hence, in tﬁglpacny result makes no eﬁort o estimate the channel coef-
low SNR regime, to a first order there is no capacity penaII ients, but uses the directions that are not affected by those

for not knowing the channel at the receiver, unlike in the hig pefficients to co_Trlgurll_:cate. Nan}tely,o;t fonutT]'CiteS on_;[thed
SNR regime. Moreover, in the low SNR regime, the perfo >rassmann maniiold. HOWEVEr, after getecting the transmitte

mance gain from having multiple antennas comes to a first Ordtsé{bspa.;:te,dthe ri}cew_er %an t?]lwaysbflnd OUtf the dt'r:eCFOHS Oféhg
from the increase in total received power by having multiple ransmitted vectors inside the subspace from the transmitte

ceiveantennas. In particular, multipteansmitantennas afford codeword, and perform an estimation on the fading coefficients.

no performance improvement. This is in sharp contrast to the
high SNR regime, where the first-order performance gain comes
from the increase in degrees of freedom due to having multiple
transmitand receive antennas. This observation is consistent
with the well-known fact that a system is power-limited in the Differential entropies are coordinate dependent. Just as the
low SNR regime but degree-of-freedom-limited in the high SNHifferential entropy of a scalar random variable or a random
regime. Note, however, that multiple transmit antennas do yieldctor can be computed in different coordinates, such as rectan-
a second-order improvement in performance at low SNR [13fular and polar coordinates, the entropy of a random matrix can

The low SNR noncoherent capacity of the multiple antenrge computed in different coordinates defined by standard ma-
channel is the same as that of a single-antenna Rayleigh-fadirg transformations. It is a widely used method in multivariate
channel. As is well known, the low SNR capacity of such statistical analysis to view matrix transformations as coordinate
channel is achieved by using a very peaky input signal, zezbanges. Research using this method can be found as early as in
most.of.the time;.and.takes.on.a-very.large value with vetiie 1920s. Anderson [10] provided a comprehensive overview
small prbability. Thus, in the low SNR regime, information irof the field. Detailed discussions can also be found in [11], [7].
the inputX = A® to the multiple-antenna channel is in facin this appendix, we will briefly summarize some of the results
conveyed solelyin'the magnitudkand not in the subspaéky  that are relevant to this paper.

APPENDIX A
COORDINATE CHANGE DEFINED BY MATRIX
TRANSFORMATIONS
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We will start by studying the LQ decomposition of a complesVD of a Complex Matrix

matrix R € CM*N for M < N
R=UXVT
R=LQ (30)
whereReCM*N for M < N.X cCM*M js a diagonal matrix

whereL € ¢M*M js g lower triangular matrix an@ € CM*N  containing the singular value&.e CM*>*¥ andV e CNV*M are
is a unitary matrix, i.e.2QT = I,;. To assure that the mapunitary matrices.
is one-to-one, we restridt to have real nonnegative diagonal The Jacobian of this coordinate change is not given in [7],
entriest but can easily be derived by expressing the SVD in terms of the

Observe thal hasw complex entries and/ real en- following composition of transformations:
tries; thus, the set of all lower triangular matrices with real non-
negative diagonal§ hasM 2 real dimensions. The number of RZ2 (L, Q)= =L (S, Q) °= B (U, A, Q).

degrees of freedom in the unitary matés dim(S(N, M)) = i . :
9N M — M?2 (real) . We observe that the total number of ge\otice thatl/, the eigenvectors &, are the left eigenvectors of

grees of freedom in the right-hand side of (30) matches that@f and the eigenvalues STare the square of the singular values

the left-hand side. In fact, the mdp — (L, Q) Of A. We have
MxN M y
CY*Y — Lx S(T, M) (dR):HliQi(AizH—l(dL)(dQ) by (31)
is a coordinate change. i=1
We are interested in the Jacobian of this coordinate change. 2(N—M)
This is best expressed in terms of differential forms. If we write 2M H L (dS)(dQ) by (33)

the differentials ofR, L, @ as(dR), (dL) and(d@), respec-
tively, then the Jacobian of this coordinate change is given by

2M H VM T O = A)2(dA)(dU)(dQ)

_(dR) i<
(dL)(dQ) | by (32)
The symbols {d-)" has different definitions for different M
kinds of matrices. For detailed discussions, please referto [11]. =[] (o7 — 0?)? [ o7V "+ (dn)(dU)(dV). (34)
From [11], we have i<y i=1
H l2(1\ —i)41 (dL)(dQ) (31) In the last step, we uséd @) = (dV') since@ = V P whereP
’ isanM x M unitary matrix. In the following, we will write the
Jacobian of SVD as
Thus, |TTM, 2 ’Z)“‘ is the Jacobian of the coordinate u
Change (30) ']N, ]\4(0’1, . O’]w) = H (012 — 0']2»)2 H O'E(N_lw)—i—l.
In the following, we will quote the Jacobian of some standard i<j i1

complex matrix transformations from [7], and use them to derive
the Jacobian of the singular value decomposition (SVD).

APPENDIX B
Eigenvalue Decomposition PROOF OFLEMMA 8
(In the sequel, we usk, k1, etc., to denote constants that do
H=UAU! not depend on the background noise pow®ITheir definitions

MM - S ~though may change in different parts of the proof.)
whereH € C*** is a Hermitian matrixA is a diagonal matrix  To prove the lemma by contradiction, we need to show that

containing the eigenvalue§. is unitary Ve 6> 0, 303 > 0, such that for any? < 03, oy it hat
(dH) = ]\ = A)*(dA)(dv). (32) satisfies
N P< o 5) (35)
> > €
iti ||l

Cholesky Decomposition
for somez, cannot be the optimal input. It suffices to construct

S = LLT another input distribution that achieves a higher mutual infor-
mation, while satisfying the same power constraint.
whereS e CM*M is g Hermitian matrixL € C*>*M js lower Our proof will be outlined as follows.

triangular with real nonnegat|ve diagonals 1) We first show that in a system with/ transmit andV

o (M z)+1 receive antennas, il < NV, and the coherence time
=2 H G (). (33) T > M + N, there exists a finite constahf < oo such
that for any fixed input distribution ok

4Different authors may treat the nonuniqueness of matrix factorizations in
different ways, which leads to a different constant in the resulting Jacobian. I(X;Y) <k +M({T - M)logSNR.
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2)

3)

4)

Step 1): For a channel with\/ transmit andV receive an-
tennas, ifM < N andT > M + N, we write the conditional

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

That is, the mutual information increases with SNR at a N

 2(T—N)+1
rate no higher that/ (7' — M )log SNR. + > E[log o; }
Under the same assumptions, if we only choose to send a =M
i ' i/’ i + > Eflog(o} — 3]
signal with strong power id{’ of the transmit antennas, S\I; J
that is, if M<i<GEN
) , SE[lOgJNJw(O'l, ey 0'1\4)]
Plleill < k20) =1, fori=M+1,.... M + Ellog Jr—ym, N—m(op1s -+, ON)]
and some constait, we show that the mutual informa- M )
tion increases with SNR at rate no higher tha(7 — +2(T — M) Z Eflogo;].
M")log SNR. This generalizes the result in the first step: =1

even allowing)/ — M’ antennas to transmit weak power, \\e define

the rate that the mutual information increases with SNR

is not affected. C, =U,S, Vi,  whereX; = diag(oy, ..., on).
We show that if an input distribution satisfies (35), i.e., ] _ ) _

it has a positive probability thakz;|| < ks, the mutual U1 eCM>MandV, ecN*M arei.d. unitary matriced/,, V7,
information achieved increases with SNR at rate strictfy1 are independent of each other. Similarly,

lower thanM (7" — M) log SNR.

We show that for a channel with the same numbér
of transmit and receive antennas, by using the constgmt < ¢(N-Mx(N-M) gndV, e ¢T-M)x(N-M) gre jd.

equal norm inputP(||z;|| = VT) = 1 for all i, the unitary matricesl», V», andE, are independent of each other.

mutual information increases with SNR at ra&t&7 —  consider the differential entropy @, andCs
M) log SNR. Hence, any input distribution that satisfies

(35) yields a mutual information that increases at a Iowerh(ol) =log |S(M, M)| +log |S(N, M)|
rate than a constant equal norm input, and thus is not + ho o)+ Ellog Jx (o o]

optimal wheno? is small enough.
h(Cy) = log|S(N — M, N — M)

+10g|S(T—M, N—M)|+h(0']\4+1, ceey O'N)

Cy =U,%,Vi,  whereX, = diagony1s ..., on).

differential entropy as + Ellog Jr—m, N—p(0nr41, -5 oN)]

WMY|X) = h(H)+ N Z Ellog([la: |* + )]

Substituting in the formula ok(Y'), we get

M

+ N(T — M) log mea?. MY) <h(C1) + WCs) + (I' = M) Z Ellog 7]
=1
Observe thaY is circular symmetric, i.e., the eigenvectors of +log |S(T, N)| +log |S(N, N)|
Taa/r)eirll.?H:nsdvgd;%ergidnearlgcs)f;h%si;]gular values; we compute —log|S(N, M)| — log|S(M, M)
' y (%), “log|S(N — M, N — M)
h(Y) =log|S(N, N)| +log|S(T, N)| + h(Xy) —log |S(T — M, N — M)|
+E[lOgJT7N(01, ...,ON)] M 5
_ =h(C1) + h(Ca) + (T — M) _ E[logo?]
whereXy = (o1, ..., on) are the singular values & . We P
order the singular values to hawe > --- > o and write + log |G(T, M)). (36)
h(Ey)Ih(O'l, e OM, OM4+1, ...O’N) R Ks: T b dﬁf(y) q b q
<h 3 o) emarks: To get an upper boun , we need to boun
SMovs s om) A MOM s o) h(Zy). The introduction of matrice€; andC, draws a con-
Consider nection between the singular values and matrices with lower di-
mensions. In the following, we will derive tight upper bound on
Ellog Jr, n(Ey)] h(C1) andh(C>), and hence get the bound ofY’).
N
=3 E[log 05<T*N)+1} + > Ellog(o? - 0%)? Now observe tha€, € C*" has bounded total power
i=1 J<I<N
M M N
; |2
= Z E[logrff(T_MH} + Z Ellog(a} — 03)?] B Z Z (CL)ij]
- = i=1 j=1
=1 i<j<M
M
+ Ellog(o7 — o3)7] _ 2 _ 2 2
igM,%;jgN _QVTJ/ —Z;E[O'i]—E Z|Yij| < NT(M + o9).
= log o7 1= 2,7
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The differential entropy o?; is maximized i2f its entries are  Now the term3 is upper-bounded since
i.i.d. Gaussian distributed with varianééM%”, thus,
T(M + o2)
——
Similarly, to get an upper bound #{C>), we need to bound

h(C1) < NMlogme

M
(37) doi=> Iy,
=1

ij

the total power oC'5. Sincerp; 41, ..., oy aretheV—M least thus by concavity of log function
singular values oY, for any unitary matrixQ € ¢(N—2)xN,
we have M 1 X
2 i 2
—-M T—-M N ZEUO%%]SMlOg(M ZE[%]
Z Z |0211| = Z =1 NT_ZZ\ZI 5
= i=M+1 = Mlog - ( +U).
< trace(QYY'QM). M

Now we writeW = W + W, whereW contains the com-  For the termy, it will be shown that
ponents of the row vectors in the subspfgg andW , contains
the perpendicular components. Notice that the subsfigces o ) 5 5
independent of¥, therefore, the total power i, is Z Ellog o] — Z Ellog(li]|” +o7)] < & (41)
=1 =1
Eftrace(W,W})] = N(I' — M)o® for some finite constant.
. . . ] Combining this with (40), we observe that the tem®, and
SinceHX + W, has ranklM, we can find a unitary matrix , are all upper-bounded by constants, thus, we get the desired
Qo € CN=M*M such thaiQy(HX + W) = 0. Notice that yesylt in Step 1).
Q, is independent oW 5, we have To prove (41), we compute the expectation of the terby
first computing the conditional expectation givé&h Observe

NZM M ) it that givenX = X, the row vectors ol are i.i.d. Gaussian
Z Z [(C2)ij|” | £ Eltrace(QoWW' Q)] distributed with a covariance matriX*X + o%Iy. Writing
=1 g=l Z € cNXT with i.i.d. CA(0, 1) entries, we have

=(N - M)(T - M)o?
. . . . o YY1 X = X)L Z2(X'X +021) 2
Again, the differential entrop¥(C-) is maximized ifC; has

i.i.d. Gaussian entries o
where< denotes the same distribution.

SinceX can be written ax = AQ, where®, € CM*T js

MC2) < (N = M)(T — M) logweo” 38) unitary matrix, let
Substituting (37) and (38) into (36), we get o_ [@1}
T(M + 0?) ©:
MY) < log |(T, M)]|w+ NMlogme ——p— be thel” x T" unitary matrix completed fror®; . Thus, we have
+(T= M) Y Ellogo?] (YYT|X = X)
+ (N - M)(Z;l— M)logmea?. (39) < z6'[diag(|lz1[1%, - ., &l 0) + 0*11]0Z".
Combining withh(Y | X), we get SinceZ has i.i.dCA (0, 1) entries,ZO' has the same distri-
bution asZ. If we decompoifMe CZNXTCir)\Eg(tT)IEJ% matrices
1@ Y) < log|G(L, M)| + NMlog T HT) 7 Al wherey € CTE T o € e

Z R4

M YY'X = X)L Z,(A% + 0* 1)) 2} +022.2].
+(T'— M — N) Z [log o7

~

Now to compute

-~

3

& & iE[log o7] foro;,i=1 M
- 2] . 12 2 L gy 0= 1, ...
+ N <§_j Elosfl =3 Eloz(oil* + o >1> -
M the largest\ singular values oY, we introduce the following
— M(T= M)logmea”. (40) lemma from [12]:

www.manaraa.com



378 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

Lemma 14:If C and B are both Hermitian matrices, and if Remarks: The upper bound of the mutual information so far
their eigenvalues are both arranged in decreasing order, theis tight at high SNR except that’ is not evaluated. In the later

N sections, we will further refine this bound by showing th'at—

Z (\(C) = N(B)? < ||C - BJ3 0 at high SNR, and hence get a tight upper bound.

=t Step 2): Assume that fodd — M’ > 0 antennas, the trans-
where|| M]3 = E 2, Ai(M) denotes theth eigenvalue of mitted signal has bounded SNR, thatf¥||z;||* < k10?) =1
matrix M. for some constank;. Start from a system with onl}/’ an-

tennas, the extra power we send on the remainihg M’ an-
tennas will get only a limited capacity gain since the SNR is
bounded. Therefore, we conclude that the mutual information
must be no more thak, + M'(T — M")log SNR for some fi-

B— Zl(Ag L O_QIJW)ZI' n!te _con_stantsQ that is uniform for all SNR levels and all input
distributions.

Observe thaB has onlyA nonzero eigenvalues, which are pre-

cisely the eigenvalues @' = (A2 + 021,)Z1 2, € CM*M,

Thus, for each of thé/ largest eigenvalues &, we have
X(C) < M(B') + 02| 2225 ||, M.

Observe tha#; has the same distribution &5, we have that
for constants = E[||Z2Z}]|2]
M
> Eflogo?|X = X]

=1

<ZE10g
<ZE10g
<ZE10g

= E[log det((A? + 0?1y )H'H + ko®Iy)]

— : i

= Ellogdet H'H] Lemma 15 (Achievability)For the constant equal norm
+ Ellogdet(A% + 021y + ko®(H H)™1)] input

where the second inequality follows from Jensen’s inequality
and taking expectation ovef,. Using the lemma again on the
second term, we have

M

Apply this lemma to
C=(Y'X =X)
and

Step 3): Now we further generalize the result above to con-
sider the input which on some of the transmit antennas, the
signal transmitted has finite SNR with a positive probability, say,
P(|zp])? < k10?) = €. Define the event

E = {|lzul® < k10%}
then the mutual information can be written as
IX;Y)<e(X;Y|E)+(1—-eI(X;Y|E)+ I(E;Y)
<e(ky + (M —1)(T — M +1)logSNR)
+ (1 —e)(ks+ M(T — M)logSNR) + log 2
whereky, ko, andks are finite constants. Under the assump-
tion that”” > M + N, the resulting mutual information thus

increases with SNR at rate that is strictly lower thaf{7 —
M)log SNR.

fori =1, ...,

(A2 + 01321 Zy) + 0% Z.Z))))]

A2 + O2IA4)ZT21) + O2k)]

Step 4): Here we will show that for the channel with the same
number of transmit and receive antennias= N, the constant
equal norm inpuf(||z;|| = v/T') = 1 for all i, we can achieve a
mutual information that increase at a ratg T — A ) log SNR.

(A% + 021y )H H) + o%k)]

liminf[I(X;Y) —

o2—0

J(SNR)] =z 0

whereSNR = M/o? and

5" Ellogo?X = X]

=1
< Ellogdet H' H]
+ Ellogdet(A? + oIy + ko | (H H) " Y||21nr)]
< E[logdet H' H] + E[log det(A? + k' 021 y;)]

wherek’ = 1 + kE[||(H'H) !||,] is a finite constant. This

again follows from Jensen’s inequality.
Now we have
M M

> Eflogo}|X = X] = log(|la* + o)

=1 7=1
2 k/O_Q
< Ellogdet H'H log eil” + Ko
[logde ]+Z Iz + o2

< E[logdet H'H] + k” (42)

wherek” is another constant. Taking expectation oderwe
get (41), and that completes Step'1).

F(SNR) = log |G(T, M)| + (T — M)E[logdet HH']
+M(T — M)log JENR (43)

whereE[logdet HH'] = M Elogx3,.

Proof: Consider
h(Y) > h(HX)
=h(HAQ) + log |G(T', M)
+ (T — M)E[logdet HA’H']
=h(H)+ MTlogT +log |G(T, M)|
+ Eflogdet HH']
M
WY |z) =h(H) +M > Ellog(|lz:||* + o%)]
=1
+M(T - M) log 7eo?
2
<h(H) + M?log T + M? %
+ M(T — M) logmeo®.
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So Now substituting (44) and (45) into (40) and noticing that we
I(X;Y) > log|G(T, M)| + (T — M)E[logdet THH'] are interested in the casé = N, weTV\(/R';e_i_ )
 M(T — M)lognea® — N? %2 I(X;Y) < log |G(T, N)| + N?log ==~
o2 —logT
= f(SNR) + M? 7~ J(SNR). O (T 2N Eflog det YY']
N~

Combine with the results in Step 3), for any input that does not < Ellog det HH] LN log(T'+k10?)

satisfy (35), since the mutual information increases at a strictly —E[log det THH']
lower rate, thus, at high SNR, they are not optimal, and thus we N
complete the proof of Lemma 8. + N (E[log det YYT]_Z Ellog(||=:]]? + o))
i=1
APPENDIX C h

§E[log:lret HHY)
— N(T' — N)log weo?.
In Appendix B, we have already shown the following results Combining the terms, we have
for a system withV transmit andV receive antennas. limsup[f(},(' Y) — f(SNR)] < 0

* The mutual information achieved by any input distribution SNR—o0
has an upper bound (40) that increases with SNR at the rateich proves the theorem.
N(T — N)log SNR.

PROOF OFTHEOREM 9

» By using the constant equal norm input, mutual informa- APPENDIX D
tion of f(SNR), as defined in (43), is achievable at high PROOF OFTHEOREM 12
SNR, see Lemma 15. Let (m§”>, t=1, ..., M) be the optimal input at noise level
* The optimal input must satisfy.” L.oforalli = o Weorder th((eo?orms tg)have .
1, ..., N. 2]l = ez || = -+ - = [l |-
To show that the channel capacity/iSSNR) + o(1) at high Now by the argument of Appendix B, we must have
SNR, since we already have atight lower bound achieved by the g__r, 0, fori=1,...,N (46)
constant equal norm input, it is sufficient to show tiiaNR) ||a:§”)||

is in fact an asymptotical upper bound at high SNR. Thus, v&ince, other wise, the mutual information achieved increases
only need to use the characterization of the optimal input givevith log SNR at a rate less thaiv(T' — N), which means the
in Lemma 8 to derive an upper bound that is tighter than (40Jower boundCx x(SNR) is not achievable.

We first observe that with the result in Lemma 8, we can get As before, we write

a better bound on (42) MY) =h(UyZy Q) + log |G(T, N)|
+ (T — N)E[logdet YY']

Ellogdet YY" = > Ellog(||z]|* + 0?)] M

=1
N \l23]|2 + k102 hMY|X) =N Z Ellogme(|a]|* + o%)]
< Ellogdet HH'|+ > E [log 2412} i=1 ,
P [l + o + N(T — M)logmea™.
N 1+ kro? /a2 Now for any input distribution”(A), let A; as theN x N
= Elogdet HH'] + Z E [Iog HQ—/IIIZIQ} diagonal matrix contain thé’ largest normglz:||, ..., ||z~
_ =1 & AL andA; is an(M — N) x (M — N) diagonal matrix with entries
The second term is the expectation of a bounded contifg, ||, ..., |lza||. Correspondingly, the partitio# and®,
uous function ofo?/||z;||?, thus we can apply the limit of we can write
o?/|l:||* — 0 and get Y =HA® +W
N
lim sup | Fllogdet YYT] - Z Ellog(||@i]]* + o?)] =H, 4,0, + H,4,0, +W.
020 el DefineY; = H; A;©, + W. We construct input distribution

< Eflogdet HH']. (44) Py from P by _set.tinglPo(Al) = P(4;)andA; = 0. That is,
we keep the distribution of th¥ largest norms, but set the other

Using this result, we have M — N norms to0. We observe thaP, uses less power than

Eflogdet YY'] P. Now we define input distributiof) such that it has the same
; N ) ) total average power d& but uses onlyV antennas to transmit
< Ellogdet HH'| + > Ellog(|la;]|> + k1o”)] equal constant power. To show that by using extra power on the

i=1

N extraM — N transmit antennas, it provides no capacity gain

o

< Ellogdet HH'| + Nlog(N > Elll: 1”1+ k102>
=1

at high SNR, we only need to compare the mutual information
generated by? and@ and show that
limsup[Ip — Ig] < 0.

g2—0

= Ellog det HH'| + N log(1 + kyoo). (45)
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Using the expression of differential entropies above, we writgherefore,

N
Ip— I =hp(UyiyQ) — ho(UyEyQ) + A A <(T - N) Z E{log(l—i—kl ||-TN+1||2>}
< Y
where N =t
~ N> Ellog(1+ Iy 1 ]*
A =(T — N)Epllogdet YY'] e o2
M = 2
— N3 Bpflog(ail +0°) <(r - N)NE|tog 1+ k”“A—+”)}
i=1 N
[E2Y +1||
—|(T - N)Eglogdet YY) B _103 <1 T )
2
N <(I'-N)NE [log <1 + ks ”mi“!)}
— N> Egllog([lzi[]* + o) : PN
i=1 — NE|log <1 + L)
O'
— N(M - N)logo?|. ) . )
( ) ] <(T— N)NE [/@; 7“@;1(! }
From Appendix C, we know that in aN x N system, given _NE '107‘ 1+ lzniil® |z~
T > 2N, the term s lZn|? o2
N , , for a finite constant..
(T — N)E[log det YY) = N>~ Eflog(|lai]|* + o%)] Now we define the evertt = {||zx||? > Lo?}. Since||zx
i=1 satisfies (46), we have that for adly P(£°) — 0. Itis easy to

heck that give®®, the conditional expectatiafig- < oo, thus
e(é‘c )Ag- is arbitrarily small at high SNR, and it is sufficient
0 only considerA given&

is maximized at high SNR by a constant equal norm input. Tha
is, if we replace the last line of the expression above by tal
expectation ovel,, we will get an upper bound

T
A <(T— N)EpllogdetYY] Ag S (T = N)Nky E{”H%”}
M 2
—NZ Ep[log(||z|* + )] _NE[10g<1+LH|"|"£7+1|2|>}
=1 N
Consider the function
— (T — N)Ep,[logdet YY]
g(t) = (T — N)kot —log(1 + Lt).
N
— N Y Eplog(|lail|* + o?)] Itis easy to check that(0) = 0. Also ¢/(t) < Ofort < to =
im1 % andg’(t) > 0 for t > t,. For large enougtt, we
) haveg(1l) = (I'— N)ks —log(1+ L) < 0, which implies that
— N(M — N)logo V<1, g(t)<0. Using this result for = ||z ||?/||zx][2 <1,
we have thatA¢ <0, and hence

= (T — N)(E[logdet YY '] — Eflogdet Y,Y])
limsup A <0.

= ||wz||2 msu
-N > Ellog(1+-—-
O'

i=N+41 Furthermore, we observe for any strictly positiyéhere ex-

. _ ists a large enough such thay(¢) is arbitrarily negative. This
where all the expectations above are taken with respect to F eplies tgat if 9 y() y neg

distribution P, (as will also be the case for all the random vari-
ables in the remainder of this appendix). lle N1

Let\; > X > --- > Ay be theN eigenvalues oYlYI. P<W > C) =6
Now sinceYY' = Y Y! + H,AJH}, by Lemma 14, we
know that each eigenvalue 8fY " is perturbed from the cor- for anye > 0 andé > 0, then
responding); by no more thar|Ho A3 H}||o. Since||zy 1 ||

is the largest element aof,, we have that for some finite con- hgi%pA =T
stantk;
Thus, we conclude that ifm sup A > —co, we must have
&
Bllogdet YY) <5 Ellog(Ai + Rl ). lexll® p @7)
(| ||
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Now the matrixUy EyQ € CN*N has limited total power. whereY, W € ¢V X = A@ ¢ CM*T HisanN x M
The differential entropy is maximized by a matrix with i.i.d.matrix with i.i.d. CA/(0, 1) entries. We decompose inW =
Gaussian entries W, + W, whereW, is the component of each row vectors of

M W in Qx, andW, is the perpendicular component.
hp(UyEyQ) < N?log e <NT02 + Z EP[sz‘HQ])- Now as an improvement of (38), we observe that
=t YY ' = (HX + W )(HX + W) + W,Wi.
On the other hand, sina@ is constant, an equal norm input ] ] )
with total transmit poweEN Ep|||z:||?] SinceHX + W1 has only rankV/, we can find a unitary matrix
=t Q, € CN=M)xN gych thatQ,(HX + W) = 0. Therefore,
5 ) ) N ) we have
ho(UyZyQ) — N?logme| NTo? + ; Ep2;]|*] N
- E Cs)i;|? | < Eltrace(QyW.WiQ)
aso — 0. Thus, ; ; [(C2)i [trace(QoW W 3,Q)]
hp(UySyQ) — ho(Uy Sy Q) =(N - M)(T - M)o*
M
S E[||zi?] angh(c’f) S4(_]0Vt_hM)b(T_M)10g7reO—2'
< NMlog|1+ z=]\z+1 < ks < oo (48) guation (40) thus becomes
2
2, Elle:l] I(X: Y) < log | G(T, )| + NM log - £
hence — M(T — M)log weo?
M
Ip —Ig =hp(UyEiyQ) — ho(UyEilyQ) + A +(I'—M—N) Z Elog o7]
<k +A. =1
M M
In order to havess + A > 0, use (47), and we have + N(Z Ellogo?] — > Ellog(|la:]| + 0'2)])-
=1 =1

2 . 0

2
54117/l The second improvement is that from (42) we have

in probability. Applying this result in (48), we have
limsup hp(UyEy @) — ho(UyEZy Q) < 0.

a2—0

M M
S Bllogo?] — S Ellog(Jll + 02)
=1 =1
Combining th Its we h t - [l ]| + Ko
ombining the results we have < Eloc H'H E 1o 1E:l- T H 07
’ s Bllog HUH] + 3 [Og ||xi||2+02}

;=1
limsup[lp —Ig] <0 _ ‘ ] )
20 The second term is the expectation of a bounded continuous

function of a2 /||z;||?, which converges t6 in probability. Ap-

which completes the proof.
P P plying that limit we have

APPENDIX E M M
PROOF OFLEMMA 13 1iIerSupZ Elloga?] - > Ellog(l]|* + o2)]

In Appendix B, we have shown that for a system with 0= =
transmit andV receive antennas, wheid < N, if T > M +
NV, for any input distribution ofX' that satisfies (35), the mutual |5, since
information achieved increases with the SNR at a rate strictly
lower thanM (T — M) log SNR. On the other hand, by using E[log(||z:||* + )] < log(E[||2:||*] + o*)
a constant equal norm input, the mutual information is lower- =log(T + %) — logT
bounded byC)y; »/(SNR), which increases with SNR at a rate
M(T — M)log SNR. Therefore, we conclude that the optimawe have

< E[logdet H'H].

input distribution(mg”), ¢ =1, ..., M) must satisfy M
lim supz Ellogo?] < Eflogdet H' H] +1log T.
% Lo 7?=0 o
[l I

T

Combining all the results so far we have

Similarly to the proof of Theorem 9, in the following, we will limsup I(X; Y) < log |G(Z, M)| — M(T — M)lognco®

userthisiconvergencestofindsatightsuppersbound for the channegt ’ - ’

capacity. For simplicity, we rewrite the channel as follows: +(T — M)E[logdet THH].
Y=-HX W (49) SubstitutingSNR = M /o2, we get the desired result.
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APPENDIX F
HEURISTIC DERIVATION OF (25)

First, using the change of coordinates of SVD defined in (3
letoy, ..., on be the singular values &f, we write
MY)=h(Uy)+h(Vy)+ h(o1, ..., on)
+ Ellog |Jr n(01, ..., on)]
= log|S(N, N)| +1log|S(T, N)|+ h{o1, ..
+ Ellog |J7 (01, .. ]

.,ON)

. on)

Now we need to compute the distribution of the singular values

of Y, to do that, we introduce the following lemma.

Lemma 16: For theY givenin (49), fix an input norms distri-
bution P(||z;||, ¢ = 1, ... M)satisfying Lemma 8. If we order
the singular values; > o5 > --- > op, then the vector

O’N)
g

d
— (ulv H2, -

OM+1
y OM, IR
g

(0'1, T2y + vt

) N]\") (50)

as background noise levef — 0, wherej, ...
singular values offA € CY*M andyipq1, - ., pv i the
singular value of an independgi¥ — M) x (T — M) matrix
with i.i.d. CN(0, 1) entries.

This lemma can be rigorously proved. Although the proof we
have is too complicated even to be included in this appendix, the
intuition behind it can be briefly illustrated here. Consider the

following equation with the rootés?, ..., o%):

F(A) =det( My — YY) =0,

, bm are the \where, by Lemma 167, ..
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(D* — My)~! as D%, the second determinant becomes

det(AMIy_pnr — WQQWEQ). Therefore, the remainingy — M

%i/genvalues ofYY' are approximately the eigenvalues of
QQWEQ

Lemma 16 states that the large singular values and the scaled
small singular values oY are asymptotically independent at
high SNR. This justifies the following approximation fofY):

hY) = log|S(N, N)| +1og |S(T, N)|+ h(o1, ...on)
+ Ellog |.J7 n(o1, ..., on)l]
=log |S(N, N)| +log|S(T, N)| + h(o1, ...on)
+h(oNF1y ooy OM)
+ Ellog |.J7 n(o1, ..., on)|]- (51)
Now letting @ be an i.d unitanyd/ x M matrix independent

of HA, consider

HHAQ) = log|S(N, N)| + log|S(N, M)|
—|—h(01, e, O’]w)
+E[lOg|JN7]\4(01, R 01\4)”

., op are identical as in (51).
Also, we write

h(Way) = (N — M)(T — M) logmeo?
=log|S(N —M, N - M)|
+log|S(T — M, N —M)|
+h(orMmyt, ---ON)
+ Ellog|Jr—m.n—m(ont1s o5 o)
Again, by Lemma 16, the singular values W 5, have

approximately the same distribution as the— M smallest

By the circular symmetry of the noise mat#k, the random gjngular values of” at high SNR, thus they are denoted as

matrixY has the same distribution as

T

W12
0 0 W ’

W22
Write

f(\) = det(\y — RR").

At high SNR, we can simplify this formula by ignoring the
terms with higher order of?

My — D> —DW!
FO) ~det| |7 2
-WiD B
where

B=Mn_y —WuWl, —WyuWi,.

Now using Schur’s identity for a determinant of block matrix

A B\ _ =
det<[o DD = det(A)det(D — CA 'B)
we get
f()\) ~ det()\ljw — DT) det()\IN,]w — WQQWEQ
— Wy Wi, + Wy D(D" — \I,)"'DW},).

To find.the roots.of the.equatiofi-\).=-0, we observe that
the first A/ roots are the entries . Furthermore, since the
other N — M roots are of the ordes?, thus they are much
smaller than the entries dD at high SNR. We approximate

OM+1, -

.., on in (51). Combining the three equations, we get
MY) = h(HAQ) + (W 22)

+E[lOg|JT7N(O'1, e, O'N)]
—E[10g|JN7]\4(0'1, ey 0'1\4)” @
— E[logdet |JT,]\47 ]\771\4(0—]\4+17 .. .O'N) ]

+ log|S(N, N)| +1og|S(T, N)|
— log|S(N, M)[ —log|S(M, M)| { ,
— log|S(N — M, N — M)| )
—log|S(T — M, N — M)|
Substituting the definition of 5 in (34), we get

Terma =2 Z Ellog(o] — 07)]
1<j<N N
+@T=N)+1) Y Ellogoy]
_9 Z E[log(a? —0]2')]
i<j<M
M
—(2(N=M)+1) > Ellogo;]

B Z i=1

Ellog(o7 — 07)]

M<i<j<N
N
— 2T -N)+1) > Ellogo]].
i=M+1
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Since the first\/ singular values are much larger than the last

M — N values, we have

2 Z log(oF — ;) — 2 Z log(c} — 03)

1<j<N J<i<M

-2
M<i<j<N
i<M, j>M
M
~2(N-M) Zlogaf.

=1

log(o? — o?)

=2 log(o} — o3)

Thus, the termy becomes

M
Terma ~2(N — M) ) logo?
=1

=(T - M)E[logdet(AHTHA)]-

Also, substituting into the definition a5 (7", V)| in (6), we
have

Termg = log |G(T, M)|.

(1]

(2]

(3]
(4]

(5]

(6]
(7]
(8]

(9]
[10]
(11]
(12]

[13]
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