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Abstract—In this paper, we study the capacity of multiple-an-
tenna fading channels. We focus on the scenario where the fading
coefficients vary quickly; thus an accurate estimation of the coef-
ficients is generally not available to either the transmitter or the
receiver. We use a noncoherent block fading model proposed by
Marzetta and Hochwald. The model does not assume any channel
side information at the receiver or at the transmitter, but assumes
that the coefficients remain constant for a coherence interval of
length symbol periods. We compute the asymptotic capacity of
this channel at high signal-to-noise ratio (SNR) in terms of the
coherence time , the number of transmit antennas , and the
number of receive antennas . While the capacity gain of the co-
herent multiple antenna channel ismin bits per second
per hertz for every 3-dB increase in SNR, the corresponding gain
for the noncoherent channel turns out to be (1 ) bits
per second per herz, where = min 2 . The ca-
pacity expression has a geometric interpretation assphere packing
in the Grassmann manifold.

Index Terms—Capacity, degees of freedom, multiple antennas,
noncoherent communication, space–time coding.

I. INTRODUCTION

M OTIVATED by the need to increase the spectral effi-
ciency of wireless systems, a major effort is being made

to study the use of multiple antennas. While much work has
been done on systems with multiplereceiveantennas, it was
only recently shown by Foschini and Telatar [1]–[3] that much
larger spectral efficiency can be achieved by utilizing multiple
antennas atboth the transmitter and the receiver.

In a single-antenna additive white Gaussian noise (AWGN)
channel, it is well known that at high signal-to-noise ratio
(SNR), 1-bit per second per hertz (b/s/Hz) capacity gain can
be achieved with every 3-dB increase in SNR. In contrast, for
a multiple antenna system with transmit and receive
antennas and independent and identically distributed (i.i.d.}
Rayleigh fading between all antenna pairs, the capacity gain
is bits per second per hertz for every 3-dB SNR
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increase [2]. The parameter is the number of de-
grees of freedom per second per hertz provided by the multiple
antenna channel, and is a key measure of performance. This
observation suggests the potential for very sizable improvement
in spectral efficiency.

The result above is derived under the key assumption that
the instantaneous fading coefficients are known to the receiver.
Thus, this result can be viewed as a fundamental limit forco-
herentmultiple-antenna communications. In a fixed wireless
environment, the fading coefficients vary slowly, so the trans-
mitter can periodically send pilot signals to allow the receiver
to estimate the coefficients accurately. In mobile environments,
however, the fading coefficients can change quite rapidly and
the estimation of channel parameters becomes difficult, partic-
ularly in a system with a large number of antenna elements. In
this case, there may not be enough time to estimate the param-
eters accurately enough. Also, the time one spends on sending
pilot signals is not negligible, and the tradeoff between sending
more pilot signals to estimate the channel more accurately and
using more time to communicate to get more data through be-
comes an important factor affecting performance. In such situ-
ations, one may also be interested in exploring schemes that do
not need explicit estimates of the fading coefficients. It is there-
fore of interest to understand the fundamental limits ofnonco-
herentmultiple-antenna communications.

A line of work was initiated by Marzetta and Hochwald [4],
[5] to study the capacity of multiple-antenna channels when nei-
ther the receiver nor the transmitter knows the fading coeffi-
cients of the channel. They used a block fading channel model
where the fading gains are i.i.d. Rayleigh distributed and re-
main constant for symbol periods before changing to a new
independent realization. Under this assumption, they reached
the conclusion that further increasing the number of transmit
antennas beyond cannot increase the capacity. They also
characterized certain structure of the optimal input distribution,
and computed explicitly the capacity of the one transmit and one
receive antenna case at high SNR.

In this paper, we will use the same model to study the channel
capacity for general values of transmit and receive an-
tennas. We will focus on the high SNR regime, not only be-
cause it is more tractable than the general problem, but also be-
cause this is the regime where multiple antennas yield the most
significant capacity increase from the additional spatial degrees
of freedom provided. The high SNR capacity for the single-an-
tenna case is obtained in [5] from first principles, by direct anal-
ysis of the integral involved in the relevant mutual information
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functional. It seems difficult to generalize their technique to the
multiple-antenna case. Instead, a geometric approach is adopted
in this paper. By transforming the problem into a new coordi-
nate system, the underlying geometry is described more natu-
rally and the input optimization problem can be easily solved.
Using this method, we get the following results.

1) Let . In the case , as
, we show that the channel capacity (b/s/Hz)

is given by

where is an explicitly computed constant that depends
only on , , and , and is a term that goes to
zero at high SNR.1 We specify the optimal input distri-
bution that asymptotically achieves this capacity. For the
case , we characterize the rate that capacity
increases with SNR. We conclude that in both cases, for
each 3-dB SNR increase, the capacity gain is

(b/s/Hz)

with This is the number of
degrees of freedom for noncoherent block fading multiple-
antenna communications

2) We show that at high SNR, the optimal strategy is to
use only of the available antennas. In particular,
having more transmit antennas than receive antennas does
not provide any capacity increase at high SNR.

3) We show that given a coherence time, the maximum
number of degrees of freedom is achieved by using
transmit antennas.

4) We give a geometric interpretation of the capacity ex-
pression assphere packing in the Grassmann manifold

: the set of all -dimensional subspaces of .
5) We evaluate the performance of a scheme using training

sequences and compare it with the capacity result. We
show that it attains the full number of degrees of freedom.

At the end of the paper, we briefly contrast the high SNR
regime with the low SNR regime, where the capacity of the mul-
tiple-antenna channel can be easily computed. We find that mul-
tiple antennas have a more significant impact in the high SNR
regime than in the low SNR regime.

In this paper, the following notations will be used. We will use
capital letters to indicate matrices, small letters for vectors and
scalars, and boldfaced letters for random objects. For example,
we write , for random matrices, , for deterministic
matrices, , for random vectors, and for scalars. The only
exception is , which we use to denote the average signal-to-
noise ratio at each receive antenna. Unless otherwise stated, we
write as differential entropy to the base.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We follow the model in [5]. Assume the system has
transmit and receive antennas, with i.i.d. Gaussian noise

1Sincelog SNR!1 asSNR !1, this is a much more accurate approx-
imation than, say, the statement thatlim[C (SNR)=log (SNR) ] = K(1� ).

at each of the receive antennas. The propagation coefficients
form a random matrix which neither the transmitter
nor the receiver knows. We adopt a Rayleigh-fading model.
We also assume that the coefficients remain constant for a
time period , and change to a new independent realization
in the next time period. This can be a model for frequency
hopping, ideally interleaved time division multiple access
(TDMA) or packet-based system where each frame of data sees
an independent realization of the channel but the channel is
constant within each frame. The important feature of this model
is that the channel remains constant only for a finite duration,
so that there is inherent channel uncertainty at the receiver. In
the following sections, we refer to as thecoherence timeof
the channel.

Because of the independence between the different coher-
ence intervals, to calculate channel capacity it is sufficient to
study one coherence interval, where each transmit antenna sends
a -dimensional vector, and each receive antenna receives a

-dimensional vector. In complex baseband representation, the
system can be written as follows:

(1)

where , and the row vectors ,
correspond to the transmitted signal at theth transmit antenna.
Similarly, , and each row vector ,

, is the received signal for theth receive antenna.
The propagation gain from theth transmit antenna to theth

receive antenna , are i.i.d. complex
Gaussian distributed with density

The additive noise has i.i.d. entries
. We normalize the equation to let the average

transmit power at each transmit antenna in one symbol period
be , so the power constraint can be written as

(2)

We refer to the as the average SNR at each receive an-
tenna. Under the normalization above .

The capacity (b/s/Hz) of the channel is given by

(3)

with the subscript indicating the number of antennas available.
The optimization is over all input distributions of satisfying
the power constraint (2).

The goal of this paper is to compute high SNR approxima-
tions to for various values of , , and . All
approximations are in the sense that the difference between the
approximation and goes to zero as the SNR tends to
infinity.

B. Known Results

For the multiple-antenna channel with perfect knowledge of
the fading coefficients at the receiver (but not at the transmitter),
the channel capacity is computed in [1], [3]. We cite the main
result in the following lemma.
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Lemma 1: Assume the fading coefficient matrix is known
to the receiver, the channel capacity (b/s/Hz) of a system with

transmit and receive antennas is given by

(4)

Defining , , then a
lower bound can be derived

where is chi-square random variable with dimension
. Moreover, this lower bound is asymptotically tight at

high SNR. We observe that this is equivalent to the capacity
of subchannels. In other words, the
multiple-antenna channel hasdegrees of freedomto commu-
nicate.

For the case , at high SNR

If we let the number of antennas increase to infinity, the
high SNR capacity increases linearly with, and

(5)

This capacity can be achieved by using a “layered space–time
architecture” which is discussed in detail in [1]. In the following,
we will refer to this capacity result with the assumption of per-
fect knowledge of fading coefficients as thecoherent ca-
pacityof the multiple-antenna channel. In contrast, we usenon-
coherent capacityto denote the channel capacity with no prior
knowledge of .

We now review several results for the noncoherent capacity
from [4], [5].

Lemma 2: For any coherence time and any number of re-
ceive antennas, the noncoherent capacity obtained with
transmit antennas can also be obtained by transmit an-
tennas.

As a consequence of this lemma, we will consider only the
case of for the rest of the paper.

A partial characterization of the optimal input distribution is
also given in [4]. Before presenting that result, we will first in-
troduce the notion ofisotropically distributed(i.d.) random ma-
trices.

Definition 3: A random matrix , for ,
is called isotropically distributed (i.d.) if its distribution is in-
variant under rotation, i.e.,

for any deterministic unitary matrix .

The following lemma gives an important property of i.d.
matrices.

Lemma 4: If is i.d., is a random unitary matrix that is
independent of , then is independent of .

To see this, observe that conditioning on any realization of
, has the same distribution as; thus, is inde-

pendent of .

Lemma 5: The input distribution that achieves capacity can
be written as , where is an i.d.unitary matrix,
i.e., . is an real diagonal matrix such
that the joint distribution of the diagonal entries is exchangeable
(i.e., invariant to the permutation of the entries). Moreover,
and are independent of each other.

The th row of represents the direction of the trans-
mitted signal from antenna, i.e., . The th diag-
onal entry of , , represents the norm of that signal.
This characterization reduces the dimensionality of the opti-
mization problem from to by specifying the distribution
of the signal directions, but the distribution of the norms is not
specified. For the rest of the paper, we will, without loss of gen-
erality, consider input distributions within this class. The con-
jecture that constant equal power input is
asymptotically optimal at high SNR was made in [5]. In the rest
of this paper, we will obtain the asymptotically optimal input
distribution and give explicit expressions for the high SNR ca-
pacity. It turns out that the conjecture is true in certain cases but
not in others.

C. Stiefel and Grassmann Manifolds

Natural geometric objects of relevance to the problem are
the Stiefel and Grassmann manifolds. TheStiefel manifold

for is defined as the set of all unitary
matrices, i.e.,

In the special case of , this is simply the surface of the
unit sphere in .

The Stiefel manifold can be viewed as an embedded
submanifold of of real dimension . One can
define a measureon the Stiefel manifold, called theHaar mea-
sure, induced by the Lebesgue measure on through
this embedding. It can be shown that this measure is invariant
under rotation, i.e., if is a measurable subset of ,

, for any unitary matrix . Hence, an
i.d. unitary matrix is uniformly distributed on the Stiefel mani-
fold with respect to the Haar measure. In the case , the
Haar measure is simply the uniform measure on the surface of
the unit sphere.

The total volume of the Stiefel manifold as computed from
this measure is given by

(6)

We can define the following equivalence relation on the
Stiefel manifold: two elements, are equivalent
if the row vectors ( -dimensional) span the same subspace,
i.e., for some unitary matrix . The
Grassmann manifold is defined as the quotient space



www.manaraa.com

362 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

of with respect to this equivalence relation. Each
element in the Grassmann manifold is an equivalence
class in . In other words, is the set of all

-dimensional subspaces of .
For simplicity, in the rest of this paper, we will refer to “di-

mension” as complex dimension, where one complex dimension
corresponds to two real dimensions. Thus, the dimensionality of
the Grassmann manifold is given by

The Haar measure on the Stiefel manifold induces a natural
measure on the Grassmann manifold. The resulting volume of
the Grassmann manifold is

(7)

For details concerning Stiefel manifolds, Grassmann mani-
folds, and the Haar measure, please refer to standard texts such
as [6].

III. N ONCOHERENTCAPACITY: , CASE

In this section, we will study the multiple-antenna fading
channel (1) with equal number of transmit and receive antennas,
which will be referred as throughout the section. We will first
concentrate on the case that . It turns out that this is the
simplest case for which we can illustrate the use of a geometric
approach. All other cases will be treated in Section IV.

To compute the channel capacity of the multiple-antenna
channel, we need to compute the differential entropy of random
matrices. To do this, a seemingly natural way is to view an

matrix as a vector of length , and compute the
differential entropy in the rectangular coordinate system in

. However, the fact that the optimal inputhas isotropic
directions suggests the use of a different coordinate system.
Therefore, we will start this section by introducing a new
coordinate system. We will then transform the problem into
this new coordinate system to calculate the relevant differential
entropies and hence compute the channel capacity. A geometric
interpretation of the result is given at the end of the section.

A. A New Coordinate System

An matrix , with , can be represented as
the subspace spanned by its row vectors ,
together with an matrix which specifies the
row vectors of with respect to a canonical basis in . The
transformation

(8)

is a change of coordinate system .
The Grassmann manifold has degrees of

Fig. 1. Coordinate change in (8):[b ; b ] is a basis of
 , r ; r are the row
vectors ofR. C = [c ] wherec is the length of the component ofr in the
direction ofb .

freedom as discussed in Section II-C. This coordinate system is
depicted in Fig. 1.

To understand the motivation of using such a coordinate
system, we will first consider the channel without the additive
noise : . In this extreme case, the row vectors of
the received signal span the same subspace as those of,
i.e., , with probability . This fact shows that the
random fading coefficients affect the transmitted signals
by changing , but leave the subspace unchanged.

For the channel with additive noise, the subspaceis cor-
rupted only by the noise, but is corrupted by both the noise
and the channel fading. Essentially, the value of the coordinate
system defined in (8) is to decompose into the directions
that are affected by both the fading and the additive noise, and
the directions that are affected by the additive noise alone. In the
high SNR regime, the randomness of is dominated by the
randomness from the fading coefficients, rather than from the
additive noise. Intuitively, we can think that is corrupted
only by the channel fading. Thus, the use of coordinate system
(8) allows us to consider the effect of the fading and the additive
noise separately at high SNR.

The following lemma provides a connection between the dif-
ferential entropies computed in rectangular coordinates and in
the new coordinate system.

Lemma 6 (Change of Coordinates):Let be a
random matrix, . If is i.d., i.e.,

deterministic unitary matrix

(9)

then

(10)

where is given by (7).

Remarks: Notice that the differential entropies in (10)
are computed in different coordinate systems. is computed
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in the rectangular coordinates in , and in .
In the rest of the paper, we write of a random matrix without
detailed explanation on the coordinate systems. If the argument
has certain properties (e.g., diagonal, unitary, triangular), the
entropy is calculated in the corresponding subspace instead of
the whole space.

The term in the right-hand side of
(10) can be interpreted as the differential entropy ofcomputed
in . For a general matrix , depends on
the choice of the canonical basis of . For each choice of a
basis, (8) gives a different coordinate change. However, with
the additional assumption (9), the distribution of does not
depend on the choice of basis. To see this, we first factorize
via the LQ decomposition

(11)

where is lower triangular with real nonnegative
diagonal entries. is a unitary matrix. Now the as-
sumption (9) is equivalent to

is i.d. and independent of (12)

Under this assumption, the row vectors of are i.d. in
, which implies that the subspace spanned by these row

vectors is uniformly distributed in the Grassmann manifold
. Furthermore, given , the row vectors are i.d. in

. Therefore, irrespective of the basis chosen, the coefficient
matrix has the same distribution as , for an i.d. unitary
matrix that is independent of .

It is well known that for the same random object, the differ-
ential entropies computed in different coordinate systems differ
by , where is the Jacobian of the coordinate change.
The term in (10) is, in fact, the Jaco-
bian term for the coordinate change (8). To prove that and to
prove Lemma 6, we need to first study the Jacobian of some
standard matrix factorizations. It is a well-established approach
in multivariate statistical analysis to view matrix factorizations
as changing of coordinate systems. For example, the LQ decom-
position (11) can be viewed as a coordinate change

, where is the set of all lower triangular matrices
with real nonnegative diagonal entries. A brief introduction of
this technique is given in Appendix A. The Jacobian of the LQ
coordinate change is given in the following lemma.

Lemma 7 [7]: Let be the diagonal elements
of . The Jacobian of the LQ decomposition (11) is

(13)

Proof of Lemma 6:We observe that the coordinate change
(8) can be obtained by consecutive uses of the LQ decomposi-
tion as follows: by Lemma 7 and (12)

and

Combine the two equations and we get

B. Channel Capacity

For convenience, we will rewrite the channel model here

(14)

where is the matrix of fading coefficients with
i.i.d. entries. is the additive Gaussian
noise with i.i.d. entries. The input can
be written as , where ,
contains the norms of the transmitted vectors at each transmit
antenna; is an i.d. unitary matrix, which is independent of.
The total transmit power is normalized to be

and the SNR is .
In this section, we will compute the mutual information

in terms of the input distribution of , and find the
optimal input distribution to maximize the mutual information.

Now

To compute , we observe that given , is
Gaussian. The row vectors of are independent of each other,
and have the common covariance matrix

Therefore, the conditional entropy is given by

(15)

Now since we only need to compute for the optimal
input distribution of , we will first characterize the optimal
input distribution in the following lemma.

Lemma 8: Let be the optimal input
signal of each antenna at noise level. If

for (16)

where denotes convergence in probability as .
Proof: See Appendix B.

This lemma says that to achieve the capacity at high SNR, the
norm of the signal transmitted at each antenna must be much
higher than the noise level. Essentially, this is similar to the sit-
uation that in the high SNR regime of the AWGN channel, it
is much more preferable to spread the available energy over all
degrees of freedom rather than transmit over only a fraction of
the degrees of freedom.

Before using Lemma 8 to compute the channel capacity rig-
orously, we will first make a few approximations at high SNR
to illustrate the intuition behind the complete calculation of the
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capacity. We first observe that since for all

(17)

To compute , we make the approximation

Now observe that is i.d., so we can apply Lemma 6.
Notice that given , is i.d. in the subspace; thus,
has the same distribution as , where is i.d.
unitary and is independent of

(18)

Combining (17) and (18), we have

(19)

Now observe that random matrix has
bounded total average power

Therefore, the differential entropy is maximized by the matrix
with i.i.d. entries, i.e., . The
equality is achieved by setting with probability
for all s. Since , is also max-
imized by the same choice of input distribution, by the concavity
of the function. Thus, the equal constant norm input distri-
bution maximizes the approximate mutual information, and the
maximum value is

A precise statement of the result is contained in the following
theorem.

Theorem 9: For the multiple-antenna channel with
transmit, receive antennas, and coherence time ,
the high SNR capacity (b/s/Hz) is given by

(20)

where

and

with a Chi-square random variable of dimension.
Proof: See Appendix C.

To connect this result to the capacity of the coherent channel,
we rewrite (20) as

(21)

where is the channel capacity with perfect
knowledge of the fading coefficients, given in (4).

An important observation on the capacity result is that for
each 3-dB SNR increase, the capacity gain is (bits
per second per hertz), the number of degrees of freedom in the
channel.

If we fix the number of antennas and let the coherence time
increase to infinity, this corresponds to the case with perfect

knowledge of fading coefficients. Indeed, the capacity given in
(21) converges to as . To see this, we use
Stirling’s formula , and write

In Fig. 2, we plot the high SNR approximation of the non-
coherent capacity given in (21), in comparison to the capacity
with perfect knowledge . We observe that as ,
the capacity given in (21) approaches .

In Fig. 3, we plot the high SNR noncoherent capacity for an
8 by 8 multiple-antenna channel in comparison to the single-an-
tenna AWGN channel capacity with the same SNR. We observe
that multiple antennas do provide a remarkable capacity gain
even when the channel is not known at the receiver. This gain is
a good fraction of the gain obtained when the channel is known.
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Fig. 2. Noncoherent channel capacity (high SNR approximation).

Corollary 10: For the special case , the ca-
pacity (b/s/Hz) is

This result is derived in [5] from first principles.
In the following corollary, we discuss the large system limit,

where both and increase to infinity, with the ratio
fixed. As in the perfect knowledge case, the channel capacity
increases linearly with the number of antennas, when both

and SNR are large.

Corollary 11: For the case when both and approach
infinity, but the ratio is fixed, the channel capacity

increases linearly with the number of antennas. The
ratio (b/s/Hz/transmit antenna) is given by

(22)

where

Notice that the term is the limiting coherent capacity
per antenna given in (5). It can be easily checked
that for all . This fact shows that to communicate in

noncoherent channel, we have to pay the price of degrees
of freedom, as well as an extra penalty of per antenna.

Proof: Consider

Using the definition of given in (7), the first term
becomes

Now use Stirling’s formula , and let and
grow, we have
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Fig. 3. Comparison of noncoherent channel capacity versus AWGN capacity.

Hence,

C. Geometric Interpretation

By using the coordinate system (8), we can decompose the
mutual information into two terms

(23)

That is, we decompose the total mutual information into the mu-
tual information conveyed by the subspace, and the mutual
information conveyed within the subspace.

Since is of the form , with being an i.d. unitary
matrix independent of , we have , where is an
i.d. unitary matrix independent of. Consequently, we
can write . From the previous section, we know
that the asymptotically optimal input distribution at high SNR
is the equal constant norm input

With this input, and . Observe
that is itself i.d., and by Lemma 4, is independent of .

Therefore, is independent of , i.e., the observa-
tion of provides no information about ; thus, the second
term in (23) is . Now we conclude that by using the equal con-
stant norm input, all the mutual information is conveyed by the
random subspace

In the noncoherent multiple-antenna channel, the informa-
tion-carrying object is a random subspace , which is a
random point in the Grassmann manifold. In contrast, for the
coherentcase, the information-carrying object is the matrix

itself. Thus, the number of degrees of freedom reduces
from , the dimension of the set of by matrices in
the coherent case, to , the dimension of the set of
all row spacesof by matrices in the noncoherent case.
The loss of degrees of freedom stems from thechannel
uncertaintyat the receiver: unitary matrices with the
same row space cannot be distinguished at the receiver.

In the following, we will further discuss the capacity result to
show that it has a natural interpretation assphere packing in the
Grassmann manifold.

In the canonical AWGN channel, the channel capacity has a
well-known interpretation in terms of “sphere packing.” This
intuition can be generalized to coherent and noncoherent mul-
tiple-antenna channels.

For the coherent multiple-antenna channel, the high SNR
channel capacity is given by . After
appropriate scaling, we have the transmit power ,
and the noise variance . Let the input be i.i.d.



www.manaraa.com

ZHENG AND TSE: COMMUNICATION ON THE GRASSMANN MANIFOLD 367

Fig. 4. Sphere packing in coherent multiple-antenna channel.

Gaussian distributed, and the codeword length be. We denote
as the sphere of radius in . For large , the input

sequence lies in the sphere with high
probability. The fading matrix stretches to , which
lies in an ellipsoid of volume .
The received signal lies in a sphere around

. The capacity can be written as the logarithm
of the ratio of the two volumes

The sphere packing is depicted in Fig. 4.
For the noncoherent channel where the fading coefficients are

unknown, we can interpret the capacity bysphere packing in the
Grassmann manifold. Since the subspace is the object that
we use to convey information, we view the transmitted signal in
each coherence interval as a point in the Grassmann manifold

. Similar to the perfect knowledge case,scales the
volume to be . With codewords of
length , the received signal lies in the product space ofscaled
Grassmann manifolds, with dimension . The noise
perturbs the signal in the sphere .
Denote as the fading coefficient matrix in co-
herence interval, we write the ratio of the two volumes

and

Using the formula and Stirling’s
formula , we get as

and

which is precisely the capacity given in Theorem 9. Therefore,
the channel capacity can be interpreted as packing spheres in the
product space of Grassmann manifolds, as illustrated in Fig. 5.

IV. NONCOHERENTCAPACITY: GENERAL CASE

In the previous section, we discussed the multiple-antenna
fading channel with same number of transmit antennas and
receive antennas, and the coherence time . In this sec-
tion, we will study other cases with general values of,
and .

A. The Case

For this case

where . has i.i.d. entries.
. is an diagonal matrix containing the

norm of the transmitted vectors. is i.d. unitary and
is independent of .

Comparing to the case with transmit and receive an-
tennas, now we have more transmit antennas. If we choose only
to use antennas to transmit, the capacity derived in Theo-
rem 9

(b/s/Hz)

is asymptotically achievable. Consequently, is a
lower bound of the capacity .

In the coherent channel, by adding more transmit antennas,
although the number of degrees of freedom is not increased, the
capacity increases by a constant that does not depend on SNR.
This increase comes from adiversity gain, through averaging
over more fading coefficients. Somewhat surprisingly, the fol-
lowing theorem shows that for the noncoherent channel at high
SNR, no increase whatsoever is obtained by having the extra

transmit antennas.

Theorem 12: If and the coherence time ,
the high SNR capacity (b/s/Hz) is given by

where is given in Theorem 9. This capacity can be
achieved by only using of the transmit antennas.

Proof: See Appendix D.

The proof is technical, but the key idea is that the number of
degrees of freedom for noncoherent communication actuallyde-
creasesif one insists on spreading the power across more than
transmit antennas. Over a coherence time, the number of spa-
tial–temporal degrees of freedom available, even if the channel
were known to the receiver, is , being limited by the number
of receiveantennas. Spreading the power across more than
transmit antennas cannot increase this number but only serves
to increase the amount of channel uncertainty, as the dimension
of the channel matrix is now increased. Thus, the effective
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Fig. 5. Sphere packing in noncoherent multiple-antenna channel.

degrees of freedom for noncoherent communications is actually
decreased.

Let us do some heuristic calculations to substantiate this in-
tuition. The same argument in Section III-B to make high SNR
approximation of the entropy can be used

Observe that is i.d. We can apply Lemma 6 to yield

Condition on , is Gaussian with i.i.d. row vectors. The
covariance of each row vector is given by .
Thus, we have

Consider now a scheme where we use of the
transmit antennas to transmit signals with equal constant norm,
and leave the rest of the antennas in silence. To keep the same
total transmit power

we set for , and for
. Let contain the first columns of

; thus

With this input, has the same distribution as ; thus,
the resulting mutual information is

where

Observe that if , has rank with probability
. By choosing different values of , only changes

by a finite constant that does not depend on SNR. On the other
hand, the term yields a large difference at
high SNR. The coefficient is the number of degrees
of freedom available for communication. Since is the total
number of spatial–temporal degrees of freedom in the coherent

case, there is alossof degrees of freedom, increasing with
. This loss is precisely due to the lack of knowledge of the
by channel matrix at the receiver.
In order to maximize the mutual information at high SNR,

we must choose to maximize the number of degrees
of freedom, which suggests the use of onlyof the transmit
antennas. Therefore, we conclude that if the equal constant norm
input is used, the extra transmit antennas should be kept
silent to maximize the mutual information at high SNR.

A direct generalization of the above argument results in the
following statement: for a noncoherent channel with , to
maximize the mutual information at high SNR, the input should
be chosen such that with probability, there are precisely of
the antennas transmitting a signal with strong power, i.e.,

and the other antennas have bounded. As a
result, the number of degrees of freedom is not increased by
having the extra transmit antennas.

The question now is whether the capacity can be increased
by a constant amount (independent of the SNR) by allocating a
small fractionof the transmit power to the extra antennas. The-
orem 12 says no: at high SNR, one cannot do better than allo-
catingall of the transmit power on only antennas. A precise
proof of this is contained in Appendix D, but some rough intu-
ition can be obtained by going back to the coherent case. The
mutual information achieved by allocating powerto the th
transmit antenna is given by

where is the -dimensional vector of fading coefficients
from transmit antenna to all the receive antennas. Since
the matrix is full rank with probability , the term

will give a negligible increase in the mutual in-
formation as long as most of the power is allocated to the first

transmit antennas. The proof of Theorem 12 reveals that a
similar phenomenon occurs for the noncoherent case.

One should note that the maximal degrees of freedom is ob-
tained by using of the transmit antennas in both the co-
herent and noncoherent cases. The difference is that in the co-
herent case, spreading the power across alltransmit antennas
retains the maximal degrees of freedom and provides a further
diversity gain (reflects in a capacity increase by a constant, inde-
pendent of the SNR). In contrast, there is a degrees of freedom
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penalty in using more than transmit antennas in the nonco-
herent case, and hence at high SNR one is forced to use only

transmit antennas even though there may be more available.
Thus, no capacity gain is possible in the noncoherent case at
high SNR. One should however observe that the degrees of
freedom penalty issmallerthe longer the coherence timeis,
and hence the SNR level for this result to be valid ishigher the
longer is as well. Thus, this result is meaningful at reasonable
SNR levels in the regime when is comparable to .

B. The Case

We now consider the opposite case, when the number of re-
ceive antennas is larger than the number of transmit antennas

. By increasing the number of the receive antennasbeyond
, intuitively, since the information-carrying object is an-di-

mensional subspace, the number of degrees of freedom should
still be per coherence interval.
On the other hand, the total received power is increased; hence
we expect that the channel capacity to increase by a constant
that does not depend on the SNR. In this section, we will argue
that the equal constant norm input is optimal for at high
SNR, and the resulting channel capacity is

(b/s/Hz)

where

(24)

and

with a chi-square random variable of dimension. The
number of degrees of freedom per symbol is ,
limited by the number oftransmitantennas.

Although the result is similar to that in Theorem 9, it turns
out that some special technique has to be used for this problem.

Compared to the case where discussed in the
previous sections, an important fact is that when we have less
transmit antennas than receive antennas, , we can no
longer make the approximation even at high
SNR. In this case, as , the differential entropy
approaches when computed in the rectangular coordinates
in . To see this, we observe that without the additive
noise , the received signal has row vectors
spanning an -dimensional subspace. That is, the row vectors
are linearly dependent of each other; therefore, .

Similar to the coordinate change defined in (8), we can de-
compose into two parts: the subspace spanned
by the row vectors with dimension and to
specify the position of the row vectors inside . The total
number of degrees of freedom is therefore .

Geometrically, we can view as an object on a submanifold
of with dimension

Now consider the received signal , which is
corrupted by the additive noise . We can decompose

to be , the component on the tangent plane of, and
, the component in the normal space of. By the argument

above, we know that the dimensions of and are

Since is circular symmetric, both and have i.i.d.
entries.

Observe that since is a random object on , at high
SNR the randomness of in the tangent plane of is domi-
nated by the randomness from rather than from the noise

. Consequently, at high SNR, has little effect on the dif-
ferential entropy . On the other hand, the normal space of

is occupied by alone, which contributes a term
in . Therefore, we get that as the

noise level , the differential entropy approaches
at the rate . In fact, by using the

technique of perturbation of singular values in Appendix E, we
can compute the distribution of the singular values of, and
show that at high SNR

(25)

where is unitary i.d. matrix that is independent of
and .
To compute the conditional entropy , we observe that

given , is Gaussian distributed. The row vectors are inde-
pendent of each other, with the same covariance matrix

. Thus, we have

Combining the preceding expressions, we get

To maximize the mutual information, the only term that de-
pends on the distribution of is the last line. is an
matrix subject to a power constraint, thus the entropy is maxi-
mized by the matrix with i.i.d. Gaussian entries. To achieve this
maximum, the input distribution has to be
for all . With the further assumption that
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Fig. 6. The number of degrees of freedom versus the number of Tx antennas forT � 2N .

, is also maximized by the
same input distribution. Therefore, we conclude that the asymp-
totically optimal input distribution for the ,
case is the equal constant norm input, and the maximum mutual
information achieved by this input is given by

(26)

where is defined in (24).
Comparing to given in Theorem 9, we observe

that increasing the number of receive antennas does not change
the rate at which capacity increases with .

To make the above argument rigorous, the convergence of the
approximation (25) has to be proved rigorously, which involves
many technical details. As a partial proof, the following lemma
shows that the approximation is an upper bound at high SNR.

Lemma 13: For the multiple-antenna channel with
transmit, receive antennas, where , and the coher-
ence time , the channel capacity (b/s/Hz) satisfies

where is defined in (24).
Proof: See Appendix E.

C. A Degree of Freedom View

Fig. 6 gives a bird’s eye view of our results so far, focusing
on the degrees of freedom attained. We fix the number of
receive antennas and the coherence time and vary the
number of transmit antennas , and plot the (noncoherent)
degrees of freedom attained by the equal constant norm input
distribution on all transmit antennas. We also assume that

. From the previous two subsections,
the number of degrees of freedom per symbol time is

We also plot the number of degrees of freedom in the coherent
case; this is simply given by

It is interesting to contrast coherent and noncoherent sce-
narios. In the coherent channel, the number of degrees of
freedom increases linearly in and then saturates when

. In the noncoherent channel, the number of degrees
of freedom increases sublinearly with first, reaches the
maximum at , and then decreases for . Thus,
high SNR capacity for the case is achieved by using
only of the transmit antennas. One way to think about this
is that there are two factors affecting the number of degrees
of freedom in multiple-antenna noncoherent communication:
the number of spatial dimensions in the system
and the amount of channel uncertainty (represented by the
factor ). For , increasing increases the
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spatial dimension but introduces more channel uncertainty;
however, the first factor wins out and yields an overall increase
in the number of degrees of freedom For , increasing

provides no further increase in spatial dimension but only
serves to add more channel uncertainty. Thus, we do not want
to use more than transmit antennas at high SNR.

D. Short Coherence Time

In this subsection, we will study the case when ,
where . From the discussion in the previous
sections, we know that to maximize the mutual information at
high SNR, our first priority is to maximize the number of de-
grees of freedom. In the following, we will first focus on maxi-
mizing degrees of freedom to get some intuitive characterization
of the optimal input.

First, we observe that if we have more transmit antennas than
receive antennas, , by a similar argument to that in Sec-
tion IV-A we know that the mutual information per coherence
interval increases with SNR no faster than .
This can be achieved by using onlyof the transmit antennas.
In the following, we will thus only consider the system with
transmit antennas no more than receive antennas, i.e., .
We will also assume .

Now suppose we use the equal constant norm input over
of the transmit antennas, signals with power much larger than
the noise.2 Under this input, the information-carrying object is
an -dimensional subspace , thus the number
of degrees of freedom available to communicate is

In Fig. 7, we plot this number as a function of . We observe
that the the number of degrees of freedom increases with
until , after which the number of degrees of freedom
decreases. If the total number of transmit antennas ,
we have to use all of the antennas to maximize the number of
degrees of freedom. On the other hand, in a system with

, only of the antennas should be used.
Now using the same argument as in Section IV-A, we can

relax the assumption of equal constant norm input, and conclude
that in a system with , only of the transmit
antennas should be used to transmit signals with strong power,
i.e., .

To summarize, we have that at high SNR, the optimal input
must have antennas transmitting signals with power much
higher than the noise level, where .
The resulting channel capacity satisfies

(27)

2Here the notion “with power much larger than the noise” means
kxxx k =� ! 1. For the remainingM �M antennas, signals with power
comparable with the noise might be transmitted. The analysis of those weak
signals, as in Appendix D, is technically hard, but it is clear that the number
of degrees of freedom is not affected, since the resulting capacity gain is at
most a constant independent of the SNR. Therefore, in analyzing the number
of degrees of freedom we may think of the remainingM � M antennas as
being silent.

Fig. 7. Number of degrees of freedom versus number of transmit antennas.

for some constants that do not depend on the SNR. We ob-
serve that when the coherence timeis small, the number of
useful transmit antennas is limited byrather than the number
of receive antennas (as in Section IV-A).

Note that the result above is not as sharp as in the other cases,
as the constant term is not explicitly computed. It appears that
when , the optimal distribution for cannot be
computed in closed form, and in general is not the equal constant
norm solution.

Lemma 2 says that given the coherence time, one needs to
use at most transmit antennas to achieve capacity. This result
holds for all SNR. The above result says that at high SNR, one
should in fact use no more than transmit antennas.

V. PERFORMANCE OF APILOT-BASED SCHEME

To communicate in a channel without perfect knowledge of
the fading coefficients, a natural method is to first send a training
sequence to estimate those coefficients, and then use the esti-
mated channel to communicate. In the case when the fading
coefficients are approximately time invariant (large coherence
time ), one can send a long training sequence to estimate the
channel accurately. However, in the case whenis limited, the
choice of the length of training sequence becomes an impor-
tant factor. In this section, we will study a scheme which uses

symbol times at the beginning of each coherence interval
to send a training sequence, and the remaining
symbol times to communicate. In the following, we will refer
to the first symbol times when the pilot signals are sent as
the training phase, and the remaining symbol times as the
communication phase. We will describe a specific scheme, then
derive the performance and compare it with the capacity results.3

The first key issue that needs to be addressed is: how much
of the coherence interval should be allocated to channel estima-
tion? This can be determined from a degree of freedom analysis.

3During the writing of this paper, we were informed by B. Hassibi of inde-
pendent and related work on pilot-based schemes, in which the more general
question of optimal training schemes is also addressed [8]. In this paper, we
will evaluate the performance the gap between a certain pilot-based scheme and
the channel capacity at high SNR.
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Suppose of the transmit antennas is to be used in the com-
munication phase. The total number of degrees of freedom for
communication in this phase is at most

(28)

the upper bound being given by the coherent capacity result
(Lemma 1). On the other hand, to estimate the by un-
known fading coefficients, we will need at least mea-
surements at the receiver. Each symbol time yieldsmeasure-
ments, one at each receiver. Hence, we need a training phase
of duration no smaller than . This represents the cost for
using more transmit antennas: the more one uses, the more the
time that has to be devoted to training rather than communica-
tion. Combining this with (28), the total number of degrees of
freedom for communication is at most

This number can be optimized with respect to, subject to
, the total number of transmit antennas. The optimal

number of transmit antennas to use is given by

with the total number of degrees of freedom given by
. This is precisely the total number of degrees of freedom

promised by the capacity results.
From this degree of freedom analysis, two insights can be

obtained on the optimal number of transmit antennas to use for
pilot-based schemes at high SNR.

• There is no point in using more transmit antennas than re-
ceive antennas: doing so increases the time required for
training (and thereby decreases the time available for com-
munication) but does not increase the number of degrees
of freedom per symbol time for communication (being
limited by the minimum of the number of transmit and
receive antennas).

• Given a coherence interval of length, there is no point
in using more than transmit antennas. Otherwise, too
much time is spent in training and not enough time for
communication.

These insights mirror those we obtained in the previous non-
coherent capacity analysis.

We now propose a specific pilot-based scheme which
achieves the optimal number of degrees of freedom of

.

• In the training phase of length , a simple pilot
signal is used. At each symbol time, only one of the an-
tennas is used to transmit a training symbol; the others are
turned off. That is, the transmitted vector at symbol time
is . The entire pilot signal

is thus an diagonal matrix .

• At the end of the training phase, all of the fading coeffi-
cients are estimated using minimum mean-square estima-
tion (MMSE).

• In the communication phase, we communicate using the
estimates of the fading coefficients and the knowledge
on the estimation error. We choose the input distribution

to have i.i.d. Gaussian entries, subject to the power
constraint.

• We normalize the total transmitted energy in one co-
herence interval to be . Under this normalization,

. Let , where indicates
the power allocation between the training phase and
the communication phase. To meet the total energy
constraint, the power of the communication phase is

. If , the same power
is used in training and communication.

In the training phase, with the pilot signals described above,
the received signals can be written as

where , contains the unknown
coefficients that are i.i.d. distributed, and is the
additive noise with variance .

Observe that since the entries ofare i.i.d. distributed, each
coefficient can be estimated separately

for

Since both and are Gaussian distributed, we can per-
form scalar MMSE

and the estimates are independent of each other, each entry
having variance

The estimation error is Gaussian distributed
with zero mean and the variance

Also, ’s are independent of each other.
In the communication phase, the channel can be written as

where has i.i.d. entries. Define

as the equivalent noise in this estimated channel, one can check
that the entries of are uncorrelated with each other and un-
correlated to the signal . The variance of entries of is
given by

The mutual information of this estimated channel
is difficult to compute since the equivalent noise is not
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Fig. 8. Comparison of pilot based scheme versus the noncoherent capacity.

Gaussian distributed. However, since has uncorrelated
entries and is uncorrelated to the signals , it has the same
first- and second-order moments as AWGN with variance.
Therefore, if we replace by the AWGN with the same
variance, the resulting mutual information is a lower bound of

. Now since has i.i.d. Gaussian distributed entries,
and is known to the receiver, this lower bound can be computed
by using the result for channel with perfect knowledge of the
fading coefficients, given in (4)

where the new SNR

The last limit is taken at high SNR. We define

as the SNR loss.

Thus, the lower bound of the mutual information (b/s/Hz)
achieved in this pilot based scheme is given by

(29)

This achieves exactly the optimal number of degrees of freedom
, as claimed.

We can find the tightest bound by optimizing over the power
allocation to maximize . We obtain

Now we conclude that by using the pilot based scheme de-
scribed in this section, we can achieve a mutual information
that increases with SNR at rate (b/s/Hz),
which differs from the channel capacity only by a constant that
does not depend on SNR.

The lower bound of mutual information for this scheme (29)
is plotted in Fig. 8, in comparison to the noncoherent capacity
derived in Theorem 9. The coherent capacity is also plotted.

Corresponding to Corollary 11, we take the large system limit
by letting both and increase to , but keep
fixed. Notice that the choice of and the resulting SNR loss

only depend on the ratio ; thus, the resulting mutual
information increases linearly with , and at large and
high SNR
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VI. L OW SNR REGIME

In this paper, we have focused almost exclusively on the high
SNR regime. It is interesting to contrast the results with the sit-
uation in the low SNR regime. First, we observe that

where the second inequality follows from the concavity of the
function and Jensen’s inequality. Hence,

This upper bound can be asymptotically achieved by allo-
cating all the transmit power on the first symbol of each co-
herence interval and on only one transmit antenna. The receiver
adds up (noncoherently) the received signals from each of the re-
ceive antennas. This reduces the multiple-antenna channel with

to a single-antenna Rayleigh-fading channel with
and times the received SNR per antenna. As is well known,
the low SNR capacity of such a channel is ,
achieving the above upper bound. (See, for instance, [9, Ex-
ample 3].) Thus,

(b/s/Hz)

The above analysis shows that the noncoherent and coherent
capacities are asymptotically equal at low SNR. Hence, in the
low SNR regime, to a first order there is no capacity penalty
for not knowing the channel at the receiver, unlike in the high
SNR regime. Moreover, in the low SNR regime, the perfor-
mance gain from having multiple antennas comes to a first order
from the increase in total received power by having multiplere-
ceiveantennas. In particular, multipletransmitantennas afford
no performance improvement. This is in sharp contrast to the
high SNR regime, where the first-order performance gain comes
from the increase in degrees of freedom due to having multiple
transmitand receive antennas. This observation is consistent
with the well-known fact that a system is power-limited in the
low SNR regime but degree-of-freedom-limited in the high SNR
regime. Note, however, that multiple transmit antennas do yield
a second-order improvement in performance at low SNR [13].

The low SNR noncoherent capacity of the multiple antenna
channel is the same as that of a single-antenna Rayleigh-fading
channel. As is well known, the low SNR capacity of such a
channel is achieved by using a very peaky input signal, zero
most of the time, and takes on a very large value with very
small prbability. Thus, in the low SNR regime, information in
the input to the multiple-antenna channel is in fact
conveyed solely in the magnitudeand not in the subspace

at all. This is of course just the opposite of the situation in the
high SNR regime.

VII. CONCLUSION

In this paper, we studied the capacity of the noncoherent
multiple-antenna channel. We used the model that assumes
no prior knowledge of the channel at either the transmitter
or the receiver end, but assumes that the fading coefficients
remain constant for a coherence interval of lengthsymbol
times. Under this assumption, we conclude that a system with

transmit and receive antennas has
degrees of freedom per symbol time to communicate,
where . To utilize these degrees
of freedom, the optimal strategy at high SNR and when

is to transmit orthogonal vectors at
of the transmit antennas with constant equal norms, and use the
subspace spanned by those vectors to carry information. The
resulting channel capacity is explicitly computed as

where is a constant given in (24). This expression can be
interpreted as sphere packing in the Grassmann manifold. We
also showed that the performance achieved by a training-based
scheme is within a constant of the capacity, independent of the
SNR.

We observe that having more transmit antennas than receive
antennas provides no capacity gain at high SNR, while having
more receive antennas does yield a capacity gain, but will not
increase the number of degrees of freedom. To maximize the
number of degrees of freedom in a channel with given coherence
time , the optimal number of transmit antennas is , and
the number of receive antennas should be no less than .

The noncoherent communication scheme suggested by the
capacity result makes no effort to estimate the channel coef-
ficients, but uses the directions that are not affected by those
coefficients to communicate. Namely, it communicates on the
Grassmann manifold. However, after detecting the transmitted
subspace, the receiver can always find out the directions of the
transmitted vectors inside the subspace from the transmitted
codeword, and perform an estimation on the fading coefficients.

APPENDIX A
COORDINATE CHANGE DEFINED BY MATRIX

TRANSFORMATIONS

Differential entropies are coordinate dependent. Just as the
differential entropy of a scalar random variable or a random
vector can be computed in different coordinates, such as rectan-
gular and polar coordinates, the entropy of a random matrix can
be computed in different coordinates defined by standard ma-
trix transformations. It is a widely used method in multivariate
statistical analysis to view matrix transformations as coordinate
changes. Research using this method can be found as early as in
the 1920s. Anderson [10] provided a comprehensive overview
of the field. Detailed discussions can also be found in [11], [7].
In this appendix, we will briefly summarize some of the results
that are relevant to this paper.



www.manaraa.com

ZHENG AND TSE: COMMUNICATION ON THE GRASSMANN MANIFOLD 375

We will start by studying the LQ decomposition of a complex
matrix for

(30)

where is a lower triangular matrix and
is a unitary matrix, i.e., . To assure that the map
is one-to-one, we restrict to have real nonnegative diagonal
entries.4

Observe that has complex entries and real en-
tries; thus, the set of all lower triangular matrices with real non-
negative diagonals has real dimensions. The number of
degrees of freedom in the unitary matrixis

(real) . We observe that the total number of de-
grees of freedom in the right-hand side of (30) matches that of
the left-hand side. In fact, the map

is a coordinate change.
We are interested in the Jacobian of this coordinate change.

This is best expressed in terms of differential forms. If we write
the differentials of as and , respec-
tively, then the Jacobian of this coordinate change is given by

The symbols “ ” has different definitions for different
kinds of matrices. For detailed discussions, please refer to [11].
From [11], we have

(31)

Thus, is the Jacobian of the coordinate
change (30).

In the following, we will quote the Jacobian of some standard
complex matrix transformations from [7], and use them to derive
the Jacobian of the singular value decomposition (SVD).

Eigenvalue Decomposition

where is a Hermitian matrix. is a diagonal matrix
containing the eigenvalues. is unitary

(32)

Cholesky Decomposition

where is a Hermitian matrix, is lower
triangular with real nonnegative diagonals

(33)

4Different authors may treat the nonuniqueness of matrix factorizations in
different ways, which leads to a different constant in the resulting Jacobian.

SVD of a Complex Matrix

where , for . is a diagonal matrix
containing the singular values. and are
unitary matrices.

The Jacobian of this coordinate change is not given in [7],
but can easily be derived by expressing the SVD in terms of the
following composition of transformations:

Notice that , the eigenvectors of, are the left eigenvectors of
, and the eigenvalues ofare the square of the singular values

of . We have

by (31)

by (33)

by (32)

(34)

In the last step, we used since where
is an unitary matrix. In the following, we will write the
Jacobian of SVD as

APPENDIX B
PROOF OFLEMMA 8

(In the sequel, we use , etc., to denote constants that do
not depend on the background noise power. Their definitions
though may change in different parts of the proof.)

To prove the lemma by contradiction, we need to show that
, , such that for any , any input that

satisfies

(35)

for some , cannot be the optimal input. It suffices to construct
another input distribution that achieves a higher mutual infor-
mation, while satisfying the same power constraint.

Our proof will be outlined as follows.

1) We first show that in a system with transmit and
receive antennas, if , and the coherence time

, there exists a finite constant such
that for any fixed input distribution of
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That is, the mutual information increases with SNR at a
rate no higher than .

2) Under the same assumptions, if we only choose to send a
signal with strong power in of the transmit antennas,
that is, if

for

and some constant , we show that the mutual informa-
tion increases with SNR at rate no higher than

. This generalizes the result in the first step:
even allowing antennas to transmit weak power,
the rate that the mutual information increases with SNR
is not affected.

3) We show that if an input distribution satisfies (35), i.e.,
it has a positive probability that , the mutual
information achieved increases with SNR at rate strictly
lower than .

4) We show that for a channel with the same number
of transmit and receive antennas, by using the constant
equal norm input for all , the
mutual information increases with SNR at rate

. Hence, any input distribution that satisfies
(35) yields a mutual information that increases at a lower
rate than a constant equal norm input, and thus is not
optimal when is small enough.

Step 1): For a channel with transmit and receive an-
tennas, if and , we write the conditional
differential entropy as

Observe that is circular symmetric, i.e., the eigenvectors of
are i.d. and independent of the singular values; we compute

in the SVD coordinates by (34),

where are the singular values of . We
order the singular values to have and write

Consider

We define

where

and are i.d. unitary matrices.
are independent of each other. Similarly,

where

and are i.d.
unitary matrices. , , and are independent of each other.
Consider the differential entropy of and

Substituting in the formula of , we get

(36)

Remarks: To get an upper bound of , we need to bound
. The introduction of matrices and draws a con-

nection between the singular values and matrices with lower di-
mensions. In the following, we will derive tight upper bound on

and , and hence get the bound of .

Now observe that has bounded total power
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The differential entropy of is maximized if its entries are
i.i.d. Gaussian distributed with variance , thus,

(37)

Similarly, to get an upper bound of , we need to bound
the total power of . Since are the least
singular values of , for any unitary matrix ,
we have

Now we write , where contains the com-
ponents of the row vectors in the subspace, and contains
the perpendicular components. Notice that the subspaceis
independent of , therefore, the total power in is

Since has rank , we can find a unitary matrix
such that . Notice that

is independent of , we have

Again, the differential entropy is maximized if has
i.i.d. Gaussian entries

(38)

Substituting (37) and (38) into (36), we get

(39)

Combining with , we get

(40)

Now the term is upper-bounded since

thus by concavity of log function

For the term , it will be shown that

(41)

for some finite constant.
Combining this with (40), we observe that the terms, , and
are all upper-bounded by constants, thus, we get the desired

result in Step 1).
To prove (41), we compute the expectation of the termby

first computing the conditional expectation given. Observe
that given , the row vectors of are i.i.d. Gaussian
distributed with a covariance matrix . Writing

with i.i.d. entries, we have

where denotes the same distribution.
Since can be written as , where is

a unitary matrix, let

be the unitary matrix completed from . Thus, we have

Since has i.i.d. entries, has the same distri-
bution as . If we decompose into block matrices

, where , , we can
write

Now to compute

for

the largest singular values of , we introduce the following
lemma from [12]:
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Lemma 14: If and are both Hermitian matrices, and if
their eigenvalues are both arranged in decreasing order, then

where , denotes theth eigenvalue of
matrix .

Apply this lemma to

and

Observe that has only nonzero eigenvalues, which are pre-
cisely the eigenvalues of .
Thus, for each of the largest eigenvalues of , we have

for

Observe that has the same distribution as, we have that
for constant

where the second inequality follows from Jensen’s inequality
and taking expectation over . Using the lemma again on the
second term, we have

where is a finite constant. This
again follows from Jensen’s inequality.

Now we have

(42)

where is another constant. Taking expectation over, we
get (41), and that completes Step 1).

Remarks: The upper bound of the mutual information so far
is tight at high SNR except that is not evaluated. In the later
sections, we will further refine this bound by showing that

at high SNR, and hence get a tight upper bound.

Step 2): Assume that for antennas, the trans-
mitted signal has bounded SNR, that is,
for some constant . Start from a system with only an-
tennas, the extra power we send on the remaining an-
tennas will get only a limited capacity gain since the SNR is
bounded. Therefore, we conclude that the mutual information
must be no more than for some fi-
nite constant that is uniform for all SNR levels and all input
distributions.

Step 3): Now we further generalize the result above to con-
sider the input which on some of the transmit antennas, the
signal transmitted has finite SNR with a positive probability, say,

. Define the event

then the mutual information can be written as

where , , and are finite constants. Under the assump-
tion that , the resulting mutual information thus
increases with SNR at rate that is strictly lower than

.

Step 4): Here we will show that for the channel with the same
number of transmit and receive antennas, , the constant
equal norm input for all , we can achieve a
mutual information that increase at a rate .

Lemma 15 (Achievability):For the constant equal norm
input

where and

(43)

where
Proof: Consider



www.manaraa.com

ZHENG AND TSE: COMMUNICATION ON THE GRASSMANN MANIFOLD 379

So

Combine with the results in Step 3), for any input that does not
satisfy (35), since the mutual information increases at a strictly
lower rate, thus, at high SNR, they are not optimal, and thus we
complete the proof of Lemma 8.

APPENDIX C
PROOF OFTHEOREM 9

In Appendix B, we have already shown the following results
for a system with transmit and receive antennas.

• The mutual information achieved by any input distribution
has an upper bound (40) that increases with SNR at the rate

.

• By using the constant equal norm input, mutual informa-
tion of , as defined in (43), is achievable at high
SNR, see Lemma 15.

• The optimal input must satisfy for all
.

To show that the channel capacity is at high
SNR, since we already have a tight lower bound achieved by the
constant equal norm input, it is sufficient to show that
is in fact an asymptotical upper bound at high SNR. Thus, we
only need to use the characterization of the optimal input given
in Lemma 8 to derive an upper bound that is tighter than (40).

We first observe that with the result in Lemma 8, we can get
a better bound on (42)

The second term is the expectation of a bounded contin-
uous function of , thus we can apply the limit of

and get

(44)

Using this result, we have

(45)

Now substituting (44) and (45) into (40) and noticing that we
are interested in the case , we write

Combining the terms, we have

which proves the theorem.

APPENDIX D
PROOF OFTHEOREM 12

Let be the optimal input at noise level
. We order the norms to have

Now by the argument of Appendix B, we must have

for (46)

since, other wise, the mutual information achieved increases
with at a rate less than , which means the
lower bound is not achievable.

As before, we write

Now for any input distribution , let as the
diagonal matrix contain the largest norms ,
and is an diagonal matrix with entries

. Correspondingly, the partitions and ,
we can write

Define . We construct input distribution
from by setting and . That is,

we keep the distribution of the largest norms, but set the other
norms to . We observe that uses less power than

. Now we define input distribution such that it has the same
total average power as but uses only antennas to transmit
equal constant power. To show that by using extra power on the
extra transmit antennas, it provides no capacity gain
at high SNR, we only need to compare the mutual information
generated by and and show that
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Using the expression of differential entropies above, we write

where

From Appendix C, we know that in an system, given
, the term

is maximized at high SNR by a constant equal norm input. That
is, if we replace the last line of the expression above by take
expectation over , we will get an upper bound

where all the expectations above are taken with respect to the
distribution (as will also be the case for all the random vari-
ables in the remainder of this appendix).

Let be the eigenvalues of .
Now since , by Lemma 14, we
know that each eigenvalue of is perturbed from the cor-
responding by no more than . Since
is the largest element of , we have that for some finite con-
stant

Therefore,

for a finite constant .
Now we define the event . Since

satisfies (46), we have that for any, . It is easy to
check that given , the conditional expectation , thus

is arbitrarily small at high SNR, and it is sufficient
to only consider given

Consider the function

It is easy to check that . Also for
, and for . For large enough , we

have , which implies that
, . Using this result for ,

we have that , and hence

Furthermore, we observe for any strictly positive, there ex-
ists a large enough such that is arbitrarily negative. This
implies that if

for any and , then

Thus, we conclude that if , we must have

(47)
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Now the matrix has limited total power.
The differential entropy is maximized by a matrix with i.i.d.
Gaussian entries

On the other hand, since is constant, an equal norm input
with total transmit power

as . Thus,

(48)

hence

In order to have , use (47), and we have

in probability. Applying this result in (48), we have

Combining the results we have

which completes the proof.

APPENDIX E
PROOF OFLEMMA 13

In Appendix B, we have shown that for a system with
transmit and receive antennas, where , if

, for any input distribution of that satisfies (35), the mutual
information achieved increases with the SNR at a rate strictly
lower than . On the other hand, by using
a constant equal norm input, the mutual information is lower-
bounded by , which increases with SNR at a rate

. Therefore, we conclude that the optimal
input distribution must satisfy

Similarly to the proof of Theorem 9, in the following, we will
use this convergence to find a tight upper bound for the channel
capacity. For simplicity, we rewrite the channel as follows:

(49)

where , . is an
matrix with i.i.d. entries. We decompose into

, where is the component of each row vectors of
in , and is the perpendicular component.

Now as an improvement of (38), we observe that

Since has only rank , we can find a unitary matrix
such that . Therefore,

we have

and .
Equation (40) thus becomes

The second improvement is that from (42) we have

The second term is the expectation of a bounded continuous
function of , which converges to in probability. Ap-
plying that limit we have

Also, since

we have

Combining all the results so far we have

Substituting , we get the desired result.
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APPENDIX F
HEURISTIC DERIVATION OF (25)

First, using the change of coordinates of SVD defined in (34),
let be the singular values of , we write

Now we need to compute the distribution of the singular values
of , to do that, we introduce the following lemma.

Lemma 16: For the given in (49), fix an input norms distri-
bution satisfying Lemma 8. If we order
the singular values , then the vector

(50)

as background noise level , where are the
singular values of , and is the
singular value of an independent matrix
with i.i.d. entries.

This lemma can be rigorously proved. Although the proof we
have is too complicated even to be included in this appendix, the
intuition behind it can be briefly illustrated here. Consider the
following equation with the roots :

By the circular symmetry of the noise matrix , the random
matrix has the same distribution as

Write

At high SNR, we can simplify this formula by ignoring the
terms with higher order of

where

Now using Schur’s identity for a determinant of block matrix

we get

To find the roots of the equation , we observe that
the first roots are the entries in . Furthermore, since the
other roots are of the order , thus they are much
smaller than the entries of at high SNR. We approximate

as , the second determinant becomes
. Therefore, the remaining

eigenvalues of are approximately the eigenvalues of
.

Lemma 16 states that the large singular values and the scaled
small singular values of are asymptotically independent at
high SNR. This justifies the following approximation for :

(51)

Now letting be an i.d unitary matrix independent
of , consider

where, by Lemma 16, are identical as in (51).
Also, we write

Again, by Lemma 16, the singular values of have
approximately the same distribution as the smallest
singular values of at high SNR, thus they are denoted as

in (51). Combining the three equations, we get

Substituting the definition of in (34), we get

Term
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Since the first singular values are much larger than the last
values, we have

Thus, the term becomes

Term

Also, substituting into the definition of in (6), we
have

Term
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